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We present a neural network model that aims to bridge the historical gap between dynamic and structural
approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobi-
ology of personality, temperament, goal-based models of personality, and an evolutionary analysis of
motives. It is organized in terms of two overarching motivational systems, an approach and an avoidance
system, as well as a general disinhibition and constraint system. Each overarching motivational system
influences more specific motives. Traits are modeled in terms of differences in the sensitivities of the
motivational systems, the baseline activation of specific motives, and inhibitory strength. The result is a
motive-based neural network model of personality based on research about the structure and neurobi-
ology of human personality. The model provides an account of personality dynamics and person–
situation interactions and suggests how dynamic processing approaches and dispositional, structural
approaches can be integrated in a common framework.
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Personality is stable—“set like plaster” (James, 1890/1981, p.
126), yet behavior is highly responsive to situations. Personality is
about what is unique to the individual, but it is also about what is
shared across people (Allport, 1962). Personality is structured but,
at the same time, dynamic. Personality is all of these things and
more, but it is not clear how they all fit together.

Here, we present a motive-based neural network model of
human personality that addresses these and other issues. The
model integrates much of what is known about personality.

Currently, work on the structure of personality and work on the
dynamics of personality proceed largely independently (for recent
discussions see Cervone & Shoda, 1999; Funder, 2001; Mischel &
Shoda, 1998). We should note that these two literatures use the
term structure in different ways (Cervone, 2005). Structural ap-
proaches to personality are concerned with the interindividual,
psychometric structure of something like the Big Five (John,
Nauman, & Soto, 2008); the statistical structure of personality
across people. Dynamic approaches are concerned with the intra-
individual or within person structure of the processing systems
responsible for personality dynamics.

The most widely accepted view of personality structure, the Big
Five (and related work) focuses on describing interindividual
personality structure but does not provide a model of the psycho-
logical dynamics that underlie this structure (Pervin, 1990). Con-
versely, most attempts to describe the dynamics of personality (the
intraindividual structure of personality mechanisms) do not make
close contact with interindividual, structural approaches. For ex-
ample, many recent attempts to understand the dynamics of human
personality focused on goals and related motivational constructs
(e.g., Cantor & Kihlstrom, 1987; Emmons, 1991; Little, Salmela-
Aro, & Phillips, 2006; L. C. Miller & Read, 1987; Mischel &
Shoda, 1995; Pervin, 1989; Read & Miller, 1989). These attempts
typically did not provide an account of how these motivational
dynamics might be responsible for the observed interindividual
structure of personality.

To date, there have been only preliminary attempts to provide an
integrated model of the interindividual structure of personality and
the underlying dynamics of personality. Providing the basis of
such an account is a central goal of this article.

A central part of our argument is that personality arises from
structured and organized motivational systems. The resulting
model allows us to map from the structure and dynamics of these
motivational systems to the observed interindividual structure of
personality and vice versa. Modeling personality in terms of or-
ganized motivational systems also enables us to integrate goal-
based approaches to personality, such as those proposed by Read
and Miller (L. C. Miller & Read, 1987, 1991; Read & Miller,
1989) and Mischel and Shoda (1995, 1998), into a dynamic model
that can explain central features of personality structure.

One weakness of current goal-based models of personality is
that the motivational systems, as they are characterized in these
models, are relatively undifferentiated and unorganized. There is
no account of how these systems are structured. As a result, it is
not clear how the motivational systems in these models could
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result in the interindividual structure of human traits. We argue
that the dynamics of organized motivational systems within indi-
viduals can produce the structural (or psychometric) relations
observed when looking across individuals, such as in analyses of
the trait lexicon and personality inventories.

Because personality is the result of a complicated interaction
among a large set of elements, we believe that simulating person-
ality provides advantages that traditional approaches do not. Sim-
ulations provide a microscope on the underlying complex person-
ality dynamics in response to changing situations. They allow us to
see how these elements might interact with each other in ways that
are not possible with more traditional methods.

Shoda and Mischel (1998; Mischel & Shoda, 1995; 2008) have
also presented a recurrent neural network model of personality, the
cognitive-affective process system model (CAPS), which is fo-
cused on understanding personality in terms of underlying goal-
based units and has shown the usefulness of neural network
modeling in understanding the underlying dynamics of personality.
However, these researchers have not tried to capture the interin-
dividual structure of human personality. In contrast, a fundamental
goal of our model is to capture major aspects of this structure. One
central difference is that in our model, mediating units are orga-
nized into specific systems, such as approach and avoidance sys-
tems, whereas in the CAPS model, the mediating units form a
relatively free form network.

Plan of the Article

First, we outline a motive-based model of personality, review
the areas of research and theory in personality and neuroscience
that served as the foundation of our model, and describe the
implications of that work for a model of the structure and dynam-
ics of personality. Second, we describe the neural network imple-
mentation of that theoretical model. Third, we present a number of
simulations that test aspects of the model. Finally, we discuss the
implications of the model for such issues as person–situation
interactions and personality dynamics, as well as for understanding
how the structural, dispositional approach to personality and the
dynamic approach can be integrated.

A Neural Network Model of Personality

Theoretical Background

In our model, we aim to capture the intraindividual structure and
resulting dynamics of human personality in terms of hierarchically
structured motivational systems. We model personality in terms of
two general levels of motivations, with an additional general
control system that operates on the motivational systems. At the
broadest level are two general motivational systems, which have
been variously termed approach and avoidance systems, behav-
ioral approach systems (BAS) and behavioral inhibition systems
(BIS; Gray, 1991; Gray & McNaughton, 2000), or behavioral
facilitation and BIS (Depue & Collins, 1999). The approach sys-
tem governs response to rewarding stimuli and strongly parallels
the broad trait of extraversion, whereas the avoidance system
governs response to punishment and aversive stimuli and strongly
parallels the broad trait of neuroticism, particularly its anxiety and
fearfulness facets. Each of these two broad motivational systems

encompasses and moderates a set of more specific motives, such as
affiliation, sex, dominance, avoiding social rejection, and avoiding
physical harm. The behavior of specific motives is a joint function
of characteristics of the broad motivational system of which it is a
part and of its own specific parameters.

Moderating the activity of these motivational systems is a gen-
eral “control system,” characterized as a disinhibition and con-
straint (e.g., Clark & Watson, 1999; Tellegen & Waller, 2008)
system. The inhibitory processes of this control system moderate
the activity of the motivational systems and related behavior.

In developing the broad motivational structures in our model,
we drew heavily on two sources. First, we drew from work on the
lexical analysis of trait language (e.g., Digman, 1997; Goldberg,
1981; John & Srivastava, 1999; Peabody & DeRaad, 2002; Saucier
& Ostendorf, 1999) and work on the structure of different trait
inventories (e.g., Lee & Ashton, 2004; McCrae & Costa, 1999;
Tellegen, & Waller, 2008; Wiggins & Trapnell, 1996). This re-
search provides information on the nature and structure of indi-
vidual differences, especially on the Big Five: Extraversion, Neu-
roticism, Agreeableness, Conscientiousness, and Openness to
Experience.

Second, we relied on numerous sources of information about the
potential neurobiological bases of human motivation and person-
ality. Recent models of temperament (e.g., Clark & Watson, 1999;
Pickering & Gray, 1999; Rothbart & Bates, 1998; Tellegen &
Waller, 2008) have identified major dimensions of temperament
(e.g., neuroticism, extraversion, BIS, BAS) and provided evidence
for their possible biological bases (also see Cloninger, 1987, 1998;
Zuckerman, 2005). Further, research by Davidson (e.g., Davidson,
Jackson, & Kalin, 2000) suggests that differences in the activation
of the right and left prefrontal cortex (PFC) correspond to chronic
individual differences in positive and negative affect and are
related to differences in Extraversion and Neuroticism, respec-
tively. The dimensions identified in this work have close parallels
with four of the major dimensions identified in the Big Five
tradition: Extraversion, Neuroticism, Agreeableness, and Consci-
entiousness.

We were also interested in more specific traits and how they
depended on more specific motives. Again, we drew on two
different literatures. First, we relied on two goal-based models of
traits, one by Read and Miller (e.g., L. C. Miller & Read, 1987,
1991; Read & Miller, 1989) and the other by Mischel and Shoda
(e.g., Mischel & Shoda, 1995; Shoda & Mischel, 1998), which
provided guidance on how specific trait terms could be related to
specific motives.

Second, evolutionary analyses (e.g., Bugental, 2000; Fiske,
1992; Kenrick & Trost, 1997) of the tasks that all humans must
solve, recent work in affective neuroscience, and recent work on
goal taxonomies (e.g., Chulef, Read, & Walsh, 2001) provided
further information about specific motivational systems that
underlie individual differences. In the evolutionary analyses, it
was argued that a set of brain or motivational systems has
evolved to handle the tasks that all humans face. Among these
systems are mating, nurturance of young, affiliation and bond-
ing with peers, establishing dominance hierarchies, insuring
attachment to caregivers, avoiding physical harm, and avoiding
social rejection. In addition, recent work in affective neuro-
science (for a review, see Panksepp, 1998) provides evidence
for a similar set of motivational systems. A hierarchical taxon-
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omy of human goals (Chulef, Read, & Walsh, 2001) provided
further corroboration.

Broad motivational and control structures.
Analysis of personality measures and the lexical analysis of

trait language. Personality measures (e.g., Eysenck, 1983, 1994;
Lee & Ashton, 2004; McCrae & Costa, 1999; Tellegen & Waller,
2008; Wiggins, & Trapnell, 1996; Zuckerman, 2002) and the
lexical analysis of trait terms (e.g., Digman, 1997; Goldberg, 1981;
John & Srivastava, 1999; Peabody & De Raad, 2002; Saucier &
Ostendorf, 1999) provide considerable evidence for what is termed
the Big Five: Extraversion, Neuroticism, Agreeableness, Consci-
entiousness, and Openness to Experience, with the strongest evi-
dence for the first four. Researchers (e.g., McCrae & Costa, 1999;
Hofstee, de Raad, & Goldberg, 1992; Lee & Ashton, 2004; Mon-
roe, Read, & Miller, 2006) have proposed that each of these broad
factors has a number of subcomponents. For example, Extraver-
sion has separate facets for energy level, gregariousness, and
dominance. Digman (1997) and Wiggins and Trapnell (1996)
argued that an important distinction cutting across the Big Five is
that between agentic (individually focused) and communal (social)
traits; thus we might expect agentic and communal aspects of
Extraversion (Depue & Morrone-Strupinsky, 2005), Neuroticism,
and Conscientiousness.

Temperament and neurobiological models of personality.
Work on temperament and the neurobiological bases of personality
(e.g., Clark & Watson, 1999; Gray, 1987a, 1987b; Gray & Mc-
Naughton, 2000; Pickering & Gray, 1999; Rothbart & Bates, 1998;
Zuckerman, 2005) provided considerable evidence for at least
three broad, biologically based individual differences: approach
(extraversion), avoidance (neuroticism), and disinhibition and con-
straint. There is also evidence that the third dimension of disinhi-
bition and constraint divides into two factors of Agreeableness and
Conscientiousness (Clark & Watson, 1999; Zuckerman, 2005).
These biologically based differences largely map onto four dimen-
sions of the Big Five: Extraversion, Neuroticism, Agreeableness,
and Conscientiousness.

Approach. One broad system produces behavioral approach
and the experience of positive emotion. It corresponds to Tellegen,
Watson, and Clark’s (1999) Positive Activation (PA) factor
(Markon, Krueger, & Watson, 2005; Tellegen, 1985; Watson,
Wiese, Vaida, & Tellegen, 1999), which represents the extent to
which an individual experiences actively positive emotions.

The approach system corresponds to Gray’s (1987b, 1991)
behavioral approach system (BAS), which is activated by reward
or nonpunishment and produces positive emotions (such as hope
and happiness). When activated, the BAS results in active ap-
proach, accompanied by feelings of energization and positive
affect. Panksepp (1998) argued for a similar system, which he calls
a seeking system. A number of researchers (e.g., Depue & Collins,
1999; Panksepp, 1998) have argued that dopamine plays a central
role in these systems. Increasing dopamine levels lead to greater
activation of the system and to increased exploration and vigor of
approach.

Depue and colleagues (Depue & Collins, 1999; Depue &
Morrone-Strupinsky, 2005) described a higher order construct of
Extraversion, which involves positive incentive motivation and
corresponds to the approach system. Extraversion includes two
subfactors of agency and affiliation. The agency subfactor involves
the incentive to approach, explore, and engage a potentially re-

warding stimulus. The neurological core of agency is found in the
ventral tegmentum, ventral pallidum, and nucleus accumbens,
which are connected to each other by dopamine pathways. The
affiliation subfactor involves feelings of warmth, affection, and
calmness that are experienced when in contact with an affiliative
stimulus. Neurologically, affiliation is based on opiate systems
throughout the brain.

Davidson, Jackson, and Kalin (2000) reviewed considerable
evidence demonstrating that the left and right prefrontal cortices
(PFCs) are differentially involved with approach related and with-
drawal related emotions and motivations (also see Davidson, 2003;
Harmon-Jones & Sigelman, 2001; W. Heller, 1993; W. Heller,
Schmidtke, Nitschke, Koven, & Miller, 2002; Schmidtke & Heller,
2004; Tomarken et al., 1992). Davidson (1992, 1995, 1998, 2001,
2003; Tomarken et al., 1992) suggested that the approach system
corresponds to an affective style characterized by increased posi-
tive affect, sensitivity to positive stimuli, recovery from negative
stimuli, approach behavior, and reduced depression and inhibition.
This affective style involves higher activation in the left hemi-
sphere PFC than in the right hemisphere PFC; moreover, an active
left PFC may inhibit the amygdala, thereby further reducing neg-
ative affect. Structurally, this affective style corresponds to Depue
and Collins’s (1999) dopamine system and Tellegen’s PA (Tomar-
ken et al., 1992).

Avoidance. Another major system, an avoidance system, pro-
duces the experience of negative emotion and behavioral inhibition
or withdrawal. It corresponds to Tellegen, Watson, and Clark’s
(1999) Negative Activation factor, which represents the extent to
which individuals experience actively negative emotions such as
distress or fear (Markon, Krueger, & Watson, 2005; Tellegen,
1985; Watson, Wiese, Vaida, & Tellegen, 1999). The earliest,
systematic empirical account of the avoidance system may have
been provided by Hans Eysenck’s (1967, 1983, 1994) Neuroticism
factor (N), which is characterized by anxiety, depression, guilt,
low self-esteem, tension, irrationality, shyness, moodiness, and
emotionality.

Gray (1987a, 1987b, 1988, 1991; Gray & McNaughton, 2000)
has provided the most detailed analysis of the avoidance system,
which he termed the behavioral inhibition system (BIS), and which
seems similar to the trait of anxiety. The BIS is sensitive to signals
of punishment, threat, nonreward, and novelty and responds with
behavioral inhibition, attention, and arousal, accompanied by anx-
iety. Gray (1987, 1988, 1991; Gray & McNaughton, 2000) recog-
nized that BIS/anxiety is closely related to Eysenck’s Neuroticism
factor but maintained that the BIS represents a more fundamental
neurological system. (Gray later reformulated his conceptualiza-
tion of the BIS [Gray & McNaughton, 2000; Smillie, Pickering, &
Jackson, 2006], which is covered in more detail in the discussion.)

Unlike many others, Panksepp (1998) does not identify a gen-
eral system for managing avoidance or sensitivity to threat. In-
stead, he identifies two systems that manage specific types of
threat. The fear system is activated by physical threat. The panic or
separation-distress system manages social attachment, such as that
between parent and child, or lovers, and is activated by separation
or the loss of a close relationship. Fear and panic could form two
major components of the more general BIS.

Davidson and colleagues (Davidson, 1992, 1995, 1998, 2001,
2003; Tomarken et al., 1992) demonstrated that chronically high
activation in right hemisphere PFC and the amygdala produces an
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affective style characterized by negative affect, heightened sensi-
tivity to negative stimuli and stress, behavioral inhibition, and
withdrawal. This affective style represents a strong avoidance
system and corresponds to Gray’s BIS and Tellegen and col-
leagues’ (1999) Negative Activation.

Constraint. In addition to two broad approach and avoidance
systems, several researchers (e.g., Clark & Watson, 1999; Rothbart
& Bates, 1998; Tellegen & Waller, 2008) have argued for a
general disinhibition and constraint system that underlies major
aspects of personality, particularly self-control and emotion regu-
lation. Clark and Watson (Clark & Watson, 1999, p. 403) proposed
that “disinhibition versus constraint” (DvC), a “tendency to behave
in an undercontrolled versus overcontrolled manner,” is related to
serotonin regulation and is an important dimension, along with
positive and negative emotionality, underlying personality differ-
ences.

Disinhibited individuals are impulsive and somewhat reckless and are
oriented toward the feelings and sensations of the immediate moment;
conversely, constrained individuals plan carefully, avoid risk or dan-
ger, and are controlled more strongly by the longer term implications
of their behavior. (Clark & Watson, 1999, p. 403)

Low serotonin functioning is generally associated with negative
outcomes, but the nature of the negative outcome depends on the
activation of other systems. Depue and Collins (1999) argued that
serotonin functions by exerting “a tonic inhibitory influence on
information flow, regardless of the type of information being
conveyed” (Clark & Watson, 1999, p. 414). This agrees with
Spoont’s (1992) argument that higher levels of serotonin increase
the signal to noise ratio, thereby focusing activity on a single
system and inhibiting competing systems: Low levels of serotonin
result in rapid switching from one activity to another, moderate
levels stabilize activity around a single system, and high levels
produce behavioral rigidity. Thus, individuals with low serotonin
functioning should be hypersensitive to a signal. Such individuals
might be over reactive to cues to both reward and punishment. For
example, both affective aggression, which seems to be related to
incentive activation of the BAS, and responses to fear or social
rejection cues should be higher in low serotonin individuals. A
second consequence of this hypersensitivity might be greater emo-
tional and motivational lability, resulting in somewhat disorga-
nized behavior.

Child temperament researchers (e.g., Derryberry & Rothbart,
1997; Eisenberg, 2002; Eisenberg, Smith, Sadovsky, & Spinrad et
al., 2004; Rothbart & Bates, 1998; Kochanska & Knaack, 2003)
have argued for a more effortful control system, in which con-
straint is the result of planful, executive processes. There is debate
as to whether this system operates at an automatic level (as seems
consistent with Clark and Watson’s, 1999, and Depue and Collins,
1999, argument) or is the result of planful, controlled thought (e.g.,
Rothbart & Bates, 1998; see Carver, 2005, for a discussion of these
issues). It has been suggested that both exist (Carver, 2005; Eisen-
berg et al., 2004).

Rothbart and Bates (1998) argued that these three dimensions have
subcomponents that correspond with more specific motivational sys-
tems. Neuroticism may have two subcomponents: fearful distress and
separation distress (corresponding to Panksepp’s fear and panic
systems). There is some disagreement about the location of irrita-
ble distress or hostility (which may come from blocking the BAS).

Rothbart and Bates (1998) and McCrae and Costa (1999) have
placed this under Neuroticism, whereas other researchers (e.g.,
Ashton & Lee, 2007; Lee & Ashton, 2004; Peabody & DeRaad,
2002) have argued that irritable distress or hostility (which may
come from blocking the BAS or approach behaviors) belongs to
(negative) Agreeableness. Extraversion may have both an energy–
activity level component and a sociability component.

Specific motives and traits. Human personality is much
more differentiated than just the broad motivational and control
systems described above. To capture this differentiation, we
model more specific traits in terms of more specific human
motives that are organized under the broad motivational sys-
tems discussed above. In doing so, we were guided by the
following literature.

Traits as goal-based, motive-based structures. L. C. Miller
and Read (1987, 1991; see also Read & Miller, 1989) have argued
that traits are goal-based structures, represented in terms of the
goals, plans, resources, beliefs, and behavioral styles of the type of
individual that can be characterized by the trait. Thus, personality
can be captured by configurations of goals, plans, resources, and
beliefs. For example, the trait helpful can be represented in terms
of a goal of helping others, plans for achieving that goal, resources
needed to achieve the goal, and beliefs related to the goal (e.g.,
whether one’s actions would actually assist the other and whether
the other desired assistance).

Mischel and Shoda’s (1995) CAPS model also suggests that
personality can be understood in terms of similar components,
called cognitive-affective units (e.g., goals, plans, expectancies,
etc.). One important difference between Read and Miller’s
(1989, 1998; L. C. Miller & Read, 1991) approach and Mischel
and Shoda’s (1995) approach is that Read and Miller (1989,
1998; L. C. Miller & Read, 1991) argued that traits can be
analyzed in terms of these goal-based components, whereas
Mischel and Shoda (1995) do not make a similar claim. Read
and Miller (1989, 1998; L. C. Miller & Read, 1991) have
explicitly mapped out the relations between their goal-based
components and the trait lexicon and personality structure.
Mischel and Shoda (1995) have not examined how individual
differences in their cognitive-affective units can map onto spe-
cific traits or personality structure, such as the Big Five.

We should note that we are not using the term goal as neces-
sarily referring to a consciously represented mental structure.
Goals refer to things that people (and animals want), but of which
they may not be conscious. For example, both people and animals
are interested in mates, food, status, and dominance, and social
animals care both about being rejected from the group and about
behaving cooperatively. Obviously, some goals are specific to
humans, and some can be consciously represented, but that is not
necessary. We should also note that most aspects of the current
model are compatible with recent work (e.g., Gosling & John,
1999; Gosling, Kwan, & John, 2003) demonstrating considerable
cross-species continuity in broad personality dimensions. Our
broad approach and avoidance motivational structures are found in
all animals, and many of the more specific motives we discuss can
be found across a wide range of species.

Evolutionary analyses of social tasks and taxonomies of hu-
man motives. The model we propose is heavily motive-based:
Individual differences in personality and behavior can be under-
stood largely in terms of the behavior of underlying motivational
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systems. But what are the basic sets of human motives that
underlie personality differences? For our model we drew on two
sources of information. First, we drew upon several recent evolu-
tionary analyses of the motivational underpinnings of social tasks.
Second, we drew upon a recent extensive taxonomy of human
motives (Chulef, Read, & Walsh, 2001).

Several researchers (e.g., Bugental, 2000; Fiske, 1992; Kenrick
& Trost, 1997) have argued that human beings have evolved
specific brain systems specialized for handling our most important
social tasks. They argued, based on both evolutionary and empir-
ical considerations, that a variety of tasks need to be solved by
human beings to survive and reproduce, including (a) status, (b)
coalition formation, (c) affectional relationships, (d) self-
protection, (e) mate choice, (f) parenting, (g) attachment, and (h)
play or exploration. Most, if not all, of these motives are shared
with other social mammals. Some of these motives are approach
related, whereas others are avoidance related. They are among the
more specific motives that underlie the two broad motivational
systems. A similar set of distinctions can be found in Panksepp’s
(1998) review of the neurobiology of human (and other animals’)
motivational systems.

A further source of information about a basic set of human
motives is Chulef, Read, and Walsh’s (2001) recent cluster anal-
ysis of a detailed list of 135 human motives. Although their results
provide a more fine-grained structure than the broad evolutionary
analyses, their broad clusters of motives generally correspond to
the evolutionary tasks.

Agentic and communal/affiliative systems. Another major
distinction in our analysis of motives is between agentic and
communal motives. Depue and Morrone-Strupinsky (2005; see
also Church, 1994; Digman, 1990; Wiggins & Trapnell, 1996)
have argued that extraversion is composed of two lower order
factors: agency and communion or affiliation. This suggests that
the approach system may encompass two general classes of mo-
tives: “Affiliation reflects enjoying and valuing close interpersonal
bonds, and being warm and affectionate . . . agency, reflects social
dominance and the enjoyment of leadership roles, assertiveness”
(Depue & Morrone-Strupinsky, 2005, pp. 314–315). Depue and
Morrone-Strupinsky have outlined a detailed argument for a set of
brain mechanisms that underlie a general communal trait. Being
responsive and caring towards others is tightly tied to neuromodu-
lators such as oxytocin, prolactin, and brain opiates (Depue &
Morrone-Strupinsky, 2005; Panksepp, 1998).

This distinction has been identified in a number of domains.
Wiggins and Trapnell (1996) and Digman (1997) have argued that
agency and communion are two major distinctions in trait struc-
ture. Cross-cultural researchers, such as Triandis (1995) and Hof-
stede (1980) have argued for a closely related difference between
cultures, individualism versus collectivism. This distinction is also
apparent in Chulef, Read, and Walsh’s (2001) goal taxonomy.

General Description of the Model

Using this literature, we developed a hierarchically organized
neural network model of personality. At the lowest level of the
model are a number of relatively specific motivational systems that
manage different motivational domains and their related behavior
(e.g., authority relations, mating, avoiding physical harm, avoiding
social rejection). At the next level, two overarching motivational

systems, approach and avoidance influence the lower level systems
and integrate over them (Cacioppo, Gardner, & Berntson, 1997).
Finally, there is a general disinhibition and constraint system that
moderates all aspects of the model.

The approach and avoidance systems are modeled by organizing
the specific motives into two general motive systems, whose
parameters can be independently manipulated to capture broad
individual differences in these systems. Disinhibition and con-
straint is the broadest level of the model; it is a general inhibitory
system that moderates activity in both the approach and avoidance
systems and the lower level systems that they moderate. The
impact of this inhibitory system is to sharpen the differences
between more highly and more weakly activated nodes by increas-
ing the signal to noise ratio. Various researchers (e.g., Depue &
Collins, 1999; Zald & Depue, 2001) have suggested that its oper-
ation is based on the neurotransmitter serotonin. This disinhibition
and constraint system is a general control system that moderates
the behavior of the fundamental approach and avoidance motiva-
tional systems.

The two broad motivational systems in the model should capture
two major, broad dimensions of personality: extraversion and
neuroticism. Note that in our approach, neuroticism is essentially
limited to fearfulness and anxiety.

Each of the two broad motivational systems moderates a number
of more specific motives. Among the approach related motives are
(a) social bonding, (b) dominance and the development of author-
ity relations in groups, (c) exploration and play, (d) caring and
parenting, and (e) mating. Among the avoidance related motives
are (a) avoiding physical harm and (b) avoiding social separation.
These motives ultimately play a role in a variety of more specific
traits and subfactors of personality.

Another structural component cuts across the two broad moti-
vational systems and the more specific motives just discussed.
These specific motivations may also be organized into two broader
systems: agentic motives and communal motives.

In addition to the central role played by the motivational sys-
tems and by the general inhibitory process (disinhibition and
constraint), the model has two other critical components. One
component provides a representation of the situations to which the
individual is responding. Situations are modeled by a feature layer,
which represents salient or motive-relevant attributes of the situ-
ation. A second component represents the resources that an indi-
vidual possesses (e.g., sense of humor, money) that are important
in the pursuit and attainment of the individual’s goals, and which
Read and Miller (1989; L. C. Miller & Read, 1987) have argued
are key components of traits. Resources are modeled by a resource
layer, which represents the presence or absence of various motive
relevant resources that the individual directly possesses as part of
their person, such as wit or a store of jokes. There are other kinds
of resources (e.g., alcohol or a computer), which an individual may
possess, but which are considered part of the situation (because
they are not part of the person); these are modeled in the feature
layer.

A diagram of the neural network model (which will be
discussed shortly) can be seen in Figure 1. In our model,
individual motives are activated as a result of interactions with
situations. The motive activations are a function of (a) the
situation, (b) experience (i.e., knowledge and memory), which
influences weight strength in the model, and (c) innate individ-
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ual differences, represented by (a) baseline motive activations
for each specific motive in the model, which can differ from
person to person, (b) individual differences in the overall sen-
sitivities of the approach and avoidance systems, which affect
the activations of individual motives and have broad impact,
and (c) individual differences in the disinhibition and constraint
system, which moderate the activity level of the entire system
and further focuses (or defocuses) motivations.

Implications. A central claim of this model is that human
personality can be understood in terms of a hierarchically orga-
nized motivational system. We argue that the structure of human
personality is the result of the operation and interaction of the
components of this system. Even if some of the specific compo-
nents of the systems are ultimately revised, we believe that the
basic approach of modeling personality as a hierarchy of interact-
ing motivational systems will prove valuable.

A considerable amount of work has been done on the structure
of human personality, and there have been various theoretical
attempts to describe some of the processes that may be responsible
for that structure. However, the accounts of that underlying struc-
ture and the potential interactions among different structures have
largely been verbal, with the exception of a computational simu-
lation by Pickering (2008) of Gray’s revised reinforcement sensi-
tivity theory (Gray & McNaughton, 2000; also described in Smil-
lie, Pickering, and Jackson, 2006). With verbal models it
is difficult, if not impossible, to examine the potential interactions
among systems. A major advantage of computational models is
that they make it possible to explicitly model the interrelations
among different systems and to model the dynamics of how these
systems may interact with each other over time. In doing so,
computational models should help us determine which kinds of
systems and relations are plausible.

Relation to our previous virtual personalities model. Our
previous virtual personalities model (Read & Miller, 2002) tested
some of the basic principles outlined above in a very abstract way,
but it was somewhat limited. The previous model (a) had very
simplified situational and personality representations, (b) could not
learn, (c) had one-to-one feature to goal mappings (each feature
linked to only one goal and each goal linked to only one feature),
and (d) had one-to-one goal to behavior mappings.

Richer representations of situations and personality. Previ-
ously, each situation node corresponded to one abstract type of
situation: a social situation, a social rejection situation, a physical
threat situation, and so on. Here, we used more realistic features
that corresponded to important aspects of two classes of situations:
social and work. For example, we used number of people present;
presence of music or alcohol; location in a cubicle, a conference
room, or a bar; presence of one’s boss or co-workers, and so on.
This allows the network to represent a variety of specific situa-
tional features, as well as configurations of those features.

We also developed more realistic and specific behaviors. For
example, behavior nodes correspond to such things as tell jokes,
dance, drink alcohol, and work hard. Previously, the behaviors
were quite abstract: social behavior, helpful behavior, fearful be-
havior, and so on.

Learning matters. In our earlier model, the network did not
learn; weights were hand coded. Unfortunately, the complexity of
hand coding prevented us from modeling realistic representations
of situations and personality. However, with learning we could
model much more complex and realistic representations. Further,
learning allows us to model how early temperament and different
socialization experiences affect learning to interpret and respond to
different situations.

From one-to-one mappings to learned configural linkages
from situations and goals. We also tried to implement more
realistic assumptions about the structure and organization of the
underlying motivational systems and their relation to the world. In
the real world, the same situational feature might activate a range
of motives, and a given motive might be activated by different
configurations of situational features.

In our earlier model, we reduced that complexity: Each goal was
directly activated by one and only one situation. This had several
undesirable consequences. First, because of this direct mapping, we
could not model how different individuals might learn different rep-
resentations and interpretations of a situation: Something either was or
was not an “avoid social rejection” situation. Second, there was no
way to learn representations from configurations of situational fea-
tures or to learn that such configurations of multiple features might
activate a goal. Thus, the previous model could not capture the
realistic web of connections among situations and goals and the
resulting interactions among them in the enactment of behavior.

Here, each situation is represented by a number of much more
concrete situational features. For example, one might have a party
situation that would be defined by features for music, alcohol, other
people, large room, low lighting, and so on. This had several impli-
cations for the current model. First, the activation of a goal should be
the result of input from a configuration of situational features. Second,
the same feature could be related to different goals.

From single source to multisource activation from goals:
Implications for behavior. An additional important difference
between the models is in how behaviors are activated. Previously,

Figure 1. Structure of the new virtual personalities neural network
model. Double-headed arrows represent bidirectional connections among
layers, which represent feedback relations among nodes and enable the
network to function as a recurrent or parallel constraint satisfaction net-
work. Single-headed arrows represent unidirectional connections in the
direction of the arrow.
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each behavior received input only from a single corresponding
goal (which in turn only received activation from a single situa-
tion). However, here, a behavior is activated by inputs from a
configuration of multiple goals, situational features, and resources,
all of which go through a hidden layer to the behavior layer. Thus,
the triggering of a behavior is the result of a much more complex
set of inputs. This more complex model allows us to capture more
aspects of L. C. Miller and Read’s (1987; Read & Miller, 1989)
model of traits, in which they argued that traits consist of config-
urations of goals, plans, resources, and beliefs (also see Mischel
and Shoda’s (1995) cognitive affective units). The structure of the
previous model was equivalent to arguing that only goals played a
role in the representation of traits or were responsible for behavior.

Further, the previous version of the model did not allow for the
possibility of either equifinality (a goal can be achieved by differ-
ent behaviors) or multifinality (a single behavior can achieve
multiple goals). The current model allows for both possibilities.

Introducing hidden layers: Implications for learning conjunc-
tive representations. We introduced hidden layers between the
different layers, with a hidden layer between the situational fea-
tures and the goal layer and between all other layers and the
behavior layer. Hidden layers add much greater computational
power to a network, allowing it to learn conjunctions of inputs that
were important in predicting behavior. One result is that the model
can now learn to represent situations and traits in terms of config-
urations of features, and behavior will be a result of those config-
urations.

Technical Description of the Current Model

Neural network models have three important components: the
network architecture (how the nodes in the network are organized
and connected, and how activation flows), the activation updating
function for the nodes, and the learning rule for weights between
nodes (Bechtel & Abrahamsen, 1991; McClelland & Rumelhart,
1986).

Basic network architecture. The basic architecture can be
seen in Figure 1, and a description of the different nodes in the
network is in Tables 1A–1D. There are two input layers: a situa-
tional feature layer and a resource layer. The situational feature
layer defines the different situations to which the model responds.
It uses a localist representation (each node corresponds to a single
feature) consisting of 29 features (See Table 1 for a list of the
features) that are used to specify various specific situations in two
general contexts: work and parties.

The resource layer represents personal resources (e.g., wit,
money, etc.) that are directly possessed by or a part of an individ-
ual (see Table 2 for a list of the 11 resources used). Things that
may be present in the environment but that are not part of an
individual are represented in the situational feature layer. We view
personal resources as a component of personality that should
influence the kinds of behaviors that are most likely to be enacted
(Read & Miller, 1989).

The situational feature layer connects, through a hidden layer, to
two goal layers: an approach layer (12 goals) and an avoidance
layer (8 goals; see Table 3 for a list of the goals). Organizing the
goals into two separate layers represents the idea that the approach
and avoidance systems are functionally separate systems with
different characteristics. Two layers also make it easier to set

parameters differently for the two systems and to model inhibition
separately within the two goal systems. The goals in the goal layers
are guided by the evolutionary analyses mentioned previously
(e.g., Bugental, 2000; Fiske, 1992; Kenrick & Trost, 1997) and by
our recent taxonomy of human goals (Chulef, Read, & Walsh,
2001). We note, however, that the field does not have a consen-
sually agreed on taxonomy of human motives.

The situational features, the goal layer, and the resource layer
are all directly connected to a hidden layer, which then connects to
the behavior layer, which has a variety (43) of behaviors that can
be enacted in work and party settings (e.g., give orders, work extra
hard, dance, drink alcohol, tell jokes, etc.; Table 4). The situational
features, resources, and behaviors in the model are not intended to
be representative but rather to demonstrate the plausibility of our
approach with relatively realistic representations. True representa-
tiveness is not possible as there are no consensually accepted
descriptions of representative situations and situational features.

The hidden layers mediate the transformation from input to
output layers. Networks consisting of one or more hidden layers
can perform more complex transformations than can those without
hidden layers. The hidden layers should allow the network to learn
to respond to conjunctions of inputs, such as conjunctions of
situational features, goals, and personal resources.

In Figure 1, double-headed arrows represent bidirectional con-
nections among layers, which represent feedback relations among
nodes and enable the network to function as a recurrent or parallel
constraint satisfaction network. Single-headed arrows represent
unidirectional connections in the direction of the arrow.

Each individual node has a bias (not shown), representing the
degree of baseline or chronic activation. Biases are implemented
by a weight from a node set to a constant activation of 1, for which
the weight represents the extent to which the node’s activation is
influenced by the bias. Bias weights can change during learning.

The Leabra implementation. We use the Leabra (local,
error-driven and associative, biologically realistic algorithm) im-
plementation framework (O’Reilly & Munakata, 2000) in the
PDP�� program. Leabra is designed as a biologically realistic
architecture. We chose the Leabra architecture because it allowed
us to model several important processes in our theoretical model of
the dynamics of motivational systems: chronic activation of mo-

Table 1
Situational Feature List

Situational features Situational features

At home At party
In conference room At work
Urgent work Work to do
With friends With strangers
With subordinates With disliked acquaintance
With boss In break room
In office/at desk Conflict situation
TV With potential date
With relatives With date
With kids At restaurant
With 0 others At bar
With 1 other Alcohol
With 2 or more others Dancing
With romantic partner Wedding/formal party
Age difference �7 years
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tives, differences in sensitivities to inputs of individual motives
and motivational systems (approach and avoidance), and inhibitory
processes. However, we are not claiming that these features of our
theoretical model are necessarily realized by the specific neurobi-
ological processes modeled by Leabra. Leabra has several inter-
esting claims about the possible biological implementation of these
features and raises interesting hypotheses for future research. But
our major interest in Leabra was that it allowed us to relatively
easily implement many of the key theoretical characteristics of our
model. Our key theoretical assumptions do not depend on whether
certain aspects of the neurobiological bases of Leabra are correct.
We consider each component in more detail below and describe
how features of the Leabra architecture map onto features of our
personality model.

The activation function. The activation function in Leabra
results in an S- or sigmoid-shaped output activation. Sigmoidal
functions are common in computational modeling because they
have a minimum and maximum activation, consistent with this
property of real neurons, and because such functions are more
computationally powerful than are linear activation functions
(Hertz, Krogh, & Palmer, 1991; Read, Vanman, & Miller, 1997;
Rumelhart & McClelland, 1986).

Possible output activation ranges from 0 to 1. As the output
activation can be thought of as representing the summed firing
frequency of a neuron, a node cannot have a negative activation.
The activation function in Leabra is intended as a useful approx-
imation of key electrophysiological properties of a real neuron, but
one that is computationally tractable.

Based on the electrophysiological properties of real neurons, the
Leabra activation function includes three types of currents or
channels in the neuron, also referred to as ionic conductances.
There is an excitatory conductance (e), controlled by excitatory
neurotransmitters, such as dopamine or norepinephrine, an inhib-
itory conductance (i), controlled by inhibitory neurotransmitters,
such as gamma-aminobutyric acid (GABA), and a leak current (l),
which is a constant process due to the constant flow of ions in and

out of the neuron. This distinction between different channels
allows us to capture individual differences in the role of different
neurotransmitter systems.

Again, we emphasize that we are not making strong claims
about the role of actual neural conductances as the basis of indi-
vidual differences in personality. Rather, we are using the conduc-
tances as a convenient way of implementing individual differences
in sensitivity to input and individual differences in general inhib-
itory processes. Although Leabra raises interesting hypotheses
about how these individual differences might be neurobiologically
implemented, our theoretical model does not depend on this im-
plementation.

Output activation in Leabra is calculated in two steps. First, the
activation level or membrane potential of the neuron (Vm) is
calculated as a function of its current activation plus its input
activation and then the output activation of the neuron is calculated
as a function of the difference between the Vm and its firing
threshold.

The change in Vm is calculated from the three conductances and
their corresponding reversal potentials E as

�Vm�t� � ��
c

gc�t�gc�Ec � Vm�t��. (1)

There are three channels or conductances (c): e, the excitatory
input, i, the inhibitory input, and l, the leak. Each input is separated
into two components, the current input level (gc) and gbar_c, which
indicates the relative number of channels for each of the types of
current. gbar_c can be thought of as the proportion of influence for
each current. So the change in Vm is a function of the sum of each
conductance times the difference between the current Vm and the
reversal potential for that channel.

The excitatory net input conductance ge(t) can be treated as the
proportion of excitatory channels that are open and computed as a
function of sending activations times the weights:

ge�t� � �xiwij� �
1

n�
i

xiwij. (2)

This term largely corresponds to the standard way of computing
input activations. However, in Leabra, unlike most neural net-
works, the input activation is standardized by the number of input
connections (1/n). The input from any bias node is also added to
this term.

The inhibitory conductance is computed by the k-winners-take-
all (kWTA) function described in the following, and leak is a
parameter set in the model. As we discuss in more detail, kWTA
inhibition is operationalized by this inhibitory current in the acti-
vation function for the neurons.

Table 2
Resource List

Resources Resources

Social skills Things to talk about
Job skills Money
Face saving skills Attention span
Quick thinking Status
Wit Time
Intelligence

Table 3
Goal List

Approach goals Avoidance goals

Friendship Mastery Avoid rejection and embarrassment Avoid loss of control
Sex/romance Exploring Avoid guilt Avoid interpersonal conflict
Be liked Fun Avoid failure Avoid effort
Help others Fairness–equality–justice Avoid physical harm Avoid risk and uncertainty
Dominance Uniqueness
Achievement Material gain
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Once Vm is calculated, the output activation of the node is
calculated as

yj �
	
Vm � ���

	
Vm � ��� � 1
. (3)

Vm represents the membrane potential, � is the threshold for the
firing of the node, and Vm must exceed the threshold for the node
to fire. 	 is the gain parameter and represents the sensitivity of the
node to its inputs, once the firing threshold is passed. Finally,
the � subscript indicates that the terms in the brackets are set to 0
if the term is less than 0.

Several aspects of these two equations are important in our
model. First, the conductances (gbar_c; the relative number of
channels) and the gain parameter (	) capture differences in the
sensitivity of a node. Higher conductances and gains lead to more
steeply accelerated activation functions; they result in higher out-
put for the same input. One important difference between these
parameters is that the gain parameter (	) only affects activations
that exceed threshold [�]), whereas conductances also affect be-
low threshold activation.

Second, each node has a firing threshold, such that Vm must
exceed the threshold � before the node can fire. This controls for
the effect of random noise as well as allowing for control of the
sensitivity of the node. The likelihood of firing can be influenced
by both the threshold of the node [�]) and by its baseline activa-
tion (which contributes to Vm).

Although these parameters provide a convenient way to model
key theoretical aspects of our model, such as baseline activation of
motives, differences in sensitivity to inputs, and degree of inhibi-
tion, our theoretical model does not depend on this neurobiological
implementation. Our central concern is capturing the theoretical
and functional aspects of our model of personality.

A final aspect of the behavior of a node that is important
(although it is not represented in the activation function) is accom-
modation. Accommodation can be thought of as a node “fatiguing”
after constant firing. One commonly cited example of this is the
observation that if you continually pronounce a word, it starts to
lose its meaning. We wanted to capture the idea that after enacting
the same behavior for a while, this behavior and associated goals
will start to fatigue, and the activation of other behaviors and goals
will increase and thus be enacted.

Inhibition. A fundamental aspect of Leabra is a general mech-
anism for inhibition. We were interested in this for several reasons.

First, we wanted to capture the idea that goals compete for control
of behavior; when the organism is actively pursuing one goal,
competing goals should be inhibited. Second, having a global
inhibitory field seemed a useful way to implement aspects of
personality, such as conscientiousness and disinhibition and con-
straint. The result of a strong inhibitory field is that only the most
strongly activated nodes can fire. Such inhibitory processes allow
for selectivity and focus in a variety of important cognitive pro-
cesses (Martindale, 1991; Nigg, 2000).

The inhibition function we use is a version of the kWTA
algorithm (Majani, Erlarson, & Abu-Mostafa, 1989). Leabra has
two variations of this algorithm. The standard kWTA algorithm
allows no more than k nodes out of a total of n (in a layer) to
become active at a given time, whereas average kWTA allows, on
average, k nodes to be active. The average kWTA algorithm allows
more than k nodes to be active if the input activations are suffi-
ciently strong, whereas strict kWTA will not. In Leabra, inhibition
is set for each individual layer. Thus, different layers can have
different maximum numbers of nodes active. Inhibition is imple-
mented in the kWTA algorithm by manipulating the inhibitory
input in the equation presented above for calculating the Vm.

Inhibition could be captured by using a large number of inhib-
itory neurons. However, this incurs a large computational cost in
large models, so O’Reilly and Munakata (2000) developed this
version of kWTA, which achieves the same outcome at much less
cost.

Learning. Learning in Leabra combines two different forms
of learning: associative, Hebbian learning and error-correcting.
The associative, Hebbian form enables the network to be sensitive
to the correlational or statistical structure of the inputs, whereas
error-correcting learning enables the network to capture a specific
task structure (whether a certain output is right or wrong). Error-
correcting learning also allows us to model reward and punishment
learning (O’Reilly & Munakata, 2000). Differential sensitivity to
actual and potential reward and punishment is an important aspect
of individual differences in personality.

Error-correcting learning in Leabra is similar, although not
identical to, the better known delta rule (Widrow & Hoff, 1960). It
uses a contrastive Hebbian learning (CHL) algorithm developed
for the Boltzmann machine and then generalized by O’Reilly
(1996). This algorithm compares the activation of the network in
a plus phase (when both inputs and desired outputs are presented
to the network) with its activation in a minus phase (when only the

Table 4
Behavior List

Behaviors Behaviors Behaviors Behaviors

Eat and drink Stay at periphery Help others with work Ensure work distributed fairly
Drink alcohol Self-disclose Order others what to do Wear something distinctive
Relax Ask others about self Dance Steal
Play practical joke Talk politics Ask other to dance Kiss up
Tease and make fun of Gossip and talk about others Ask for date Be cheap
Try new dance steps Talk about work (job-related) Kiss Mediate
Intro self to others Tell jokes Do job Give in
Surf web Compliment others Extra effort job Procrastinate
Explore environment Ignore others Find new way to do job Pretend to work
Leave Insult others Improve skills Stay with comfortable others
Be silent Clean up Confront other about slacking
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inputs are presented). CHL then adjusts weights to reduce the
difference in activation between the two phases. One way to think
about what CHL is doing is that in the minus phase, the network
is using its inputs to predict its outputs, and the plus phase
represents what the output activations actually should be.

As O’Reilly and Munakata (2000) note, in some situations,
correlational structure and task structure are different kinds of
information, and combining the two kinds of information provides
a more powerful learning mechanism. They are combined as a
weighted average of the weight change calculated by each learning
rule. It is important to note that the error-correcting component in
Leabra enables learning in multilayer networks with hidden units.
The interested reader can find a detailed description of these
learning mechanisms in O’Reilly and Munakata (2000).

Relation of Model Parameters to
Individual Differences

We used Leabra because its features allow us to directly imple-
ment key aspects of our theoretical model, such as the role of
individual differences in inhibition, individual differences in the
sensitivity and chronic activation of different layers (especially
the approach and avoidance layers), and individual differences in
the baseline activation of motives. It also provides a flexible
learning rule (CHL) that is more biologically plausible then back-
propagation. However, our theoretical model does not depend on
the specific neurobiological implementation.

In our model, the following individual differences can be mod-
eled in terms of specific features of Leabra. First, the gains and
conductances of nodes determine their sensitivity to inputs. Thus,
manipulating the gains and conductances of nodes in the approach
and avoidance layers should allow us to model individual differ-
ences in reward sensitivity (BAS) and punishment sensitivity
(BIS). Second, the CHL rule allows us to model individual differ-
ences in learning in response to rewards and punishments; for
example how differences in temperamental sensitivity might in-
fluence how individuals learn to respond differently to the same
stimuli. These two features should allow us to model important
aspects of extraversion and neuroticism. Third, the bias weights of
motives in the approach and avoidance layers can be used to model
the chronic or baseline activation of those motives and, thus, the
extent to which they guide behavior. This allows us to model
individual differences in the importance of specific motives in the
representation of specific traits. These bias weights and the base-
line activation parameter Vm_init could also be used to model
differences between sets of motives within the approach and
avoidance layers, such as the differences between agentic and
communal goals. Fourth, manipulating the degree of inhibition
within different layers, such as the approach, avoidance, and
behavior layers (as operationalized by kWTA) will influence the
selectivity and focus of the network. This should allow the network
to capture certain aspects of the general factor of disinhibition and
constraint (also related to aspects of conscientiousness and impul-
sivity). Consistent with suggestions by researchers such as Depue
(1996) and Zuckerman (2005), this may allow the network to
capture aspects of the role of serotonin in personality.

Training Procedure for the Personality Model

Our model first needed to be trained. The network had five
different meaningful layers (situational features, resources, ap-
proach and avoidance goals, and behaviors). We did not just
train the pairing between the initial inputs (situational features
and resources) and the final outputs (behaviors) because that
would not insure that the network learned all the appropriate
relations, especially for such things as situational feature to goal
pairings. To insure learning of relations among the layers, we
trained five different pairs of relations among different layers
(e.g., features to goals, goals to behavior). An individual train-
ing event consisted of active units in a layer that served as the
input and an active unit in a layer that served as the output. The
individual training events paired one input layer with one
output layer, with exceptions noted below. The model was
trained on input– output patterns for each of the following layer
pairings: situations– goals, situations– behaviors, goals–
behaviors, and resources– behaviors. In addition, the model was
trained on a set of events that involved pairing the simultaneous
activation of three input layers (situations � goals � resources)
with the behavior layer.

We should note that Leabra allows one to train relations
among any arbitrarily chosen pair of layers or even among
multiple layers. Although the goal layers mediate between the
situational features and the behavior layer, we believe that
individuals do have access to aspects of the current state of the
goal systems. People are often aware of how much they want
different things. Thus, the activation of goals can serve both as
target activations and input activations.

One can view learning in this context as “wiring up” the net-
work in a reasonable way. We used this technique to have the
network associate situational features with the goal affordances of
situations and to associate the goal affordances of situations with
relevant behaviors. We assume that weight strength is a function of
experience and hard-wired biases.

Definitions of the training events were determined by a consen-
sus of the authors. For the situational feature layer, this meant
creating a set of situations, from conjunctions of input features,
within which the agent would act. These training situations and
their features can be seen in Tables 1–5. Outputs were then paired
with these situations, to create the training events involving situ-
ational inputs. For the situation–goal events, for each particular
situation there was a single goal output. So for example, the
training events that paired the situation “taking a break (at work)
by yourself” with its associated goals consisted of four active units
on the feature (input) layer, “in the break room,” “at the work-
place,” “with work to do,” and “with zero others/alone,” and one
active unit per event in the goal layers, for example, either “have
fun” or “avoid effort.” For the situation–behavior events, an input
situation was paired with one active output (behavior) unit at a
time. For goal–behavior events, one input (goal) was paired with
one output (behavior), and for resource-behavior events, one input
(resource) was paired with one output (behavior). For the situa-
tion � goals � resources events, multiple units could be active in
each of the three input layers, and these input combinations were
paired with one output behavior.

We also wanted the network to be roughly sensitive to the
relative frequency with which things co-occur in the environment,
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which should be represented by weight strength. To capture this,
we varied the relative frequency of different features and their
frequency of co-occurrence. Estimates of the relative frequency of
the inputs and their frequency of co-occurrence were based on the
judgments of Stephen J. Read, Brian M. Monroe, Aaron L. Brown-
stein, Yu Yang, and Gurveen Chopra. We first independently rated
the relative frequency of occurrence and co-occurrence of the
different inputs and outputs and then discussed the ratings until we
reached consensus. For example, we judged the situation “party in
a restaurant/bar” to be approximately twice as common as the
situation “family birthday party.” Thus, there were twice as many
of the former events, compared with the latter.

Again, the important point here was to come up with a plausible
rather than a clearly representative frequency distribution. A com-
prehensive description of the frequency of occurrence and co-
occurrence of social situations and behaviors does not exist.

Because each of the inputs varied with respect to the number of
outputs associated with it (for example, there were more behaviors
associated with the goal “have fun” than with behaviors associated
with “avoid guilt”), inputs with more outputs would have fewer
instances per output than those with relatively few outputs, in order to
keep the total frequency of the input in line with our judgments. Thus,
for example, it was judged that the goal “have fun” would appear
approximately 2.5 times as often as “avoid guilt.” But because “have
fun” has 12 behaviors associated with it, and “avoid guilt” only two,
each behavior with “have fun” has to share the total time with many
more behaviors, so in the end each “have fun” behavior pairing was
seen less often than each “avoid guilt” behavior pairing. Specifically,
the pairing of “have fun” with “tell jokes” would be seen seven times,
whereas the pairing of “avoid guilt” with “leave” would be seen 17
times. This is appropriate because if more things are associated with
an input, each will be less strongly associated with the input. Because
there were 11 other behaviors paired with “have fun,” each would be
seen seven times, and the goal “have fun” would be seen a total of 84
times (12 behaviors 
 7 replications), versus 34 total events for

“avoid guilt” (2 behaviors 
 17 replications), thus preserving the
overall relative frequency of those goals.

There were 356 unique training events, each one replicated for
frequency considerations so that there were 4,642 events seen per
training epoch. During each epoch, the order of events was ran-
domly permuted. Training proceeded for 25 epochs; testing over a
range from five to 500 epochs showed no significant increases in
performance after about 25 epochs.

Testing the Model

We first tested whether the model learned the relationships in
the training events and generated reasonable behaviors in response
to relatively novel situational inputs. These test whether the model
learns and behaves appropriately but not whether it can model
personality. We then present a series of simulations that test how
well the model explains various aspects of the structure and
dynamics of personality.

Basic validation of the network.
Validation 1: How well did the model learn the relations

between situations and behaviors? After training the model as
described above, we tested it by using the 15 different situations
from the training phase as inputs (See Table 5). During testing, we
turned on accommodation, which can be thought of as the fatigu-
ing of a node, allowing other nodes to become active. For each
input we recorded both the behavior with the highest initial acti-
vation and the subsequent two behaviors activated. These behav-
iors were then coded for correctness in terms of whether they had
been paired with that situation during training. This was done for
five random initializations of the starting weights.

Results. The model performed well (See Table 6). Looking
only at the first behavior, over 93% of the time it generated a
behavior that was paired with the situation during training. A
random response would result in an appropriate response some-
what less than 20% of the time. And of the first 3 behaviors

Table 5
Fifteen Original Situation Descriptions

Situation Features

Individual assignment At work; in office; with 0 others; work to do; urgent
Working with one other At work; in office; at desk; work to do; urgent work; with 1other
Working together on urgent

project
At work; conference room; in an office; conflict situation; work to do; urgent; with 2 or more others; with

subordinates; with disliked acquaintance
At a group meeting At work; in an office; conference room; conflict situation; work to do; with 2 or more others; with friends;

with boss; with disliked acquaintance
Review with boss At work; with boss; office; conflict situation; urgent
Taking a break with coworkers In break room; at work; TV; work to do; with 2 or more others; with friends
Taking a break by yourself In break room; at work; in office; at desk; work to do; with 0 others
Party at work Party; conference room; work; alcohol; work to do; with 2 or more others; with friends; with boss; with

subordinates; difference �7 years
Social engagement At boss’ house With boss; with strangers; with disliked acquaintance; with friends; with 2 or more others; conflict situation;

with subordinates; wit hromantic partner
Dance Dancing; with friends; with potential date; with strangers; with 2 or more others; alcohol
Trying to get a date Party; restaurant; alcohol; with 1 other; with potential date
On a date Restaurant; alcohol; with 1 other; with date
Family birthday party Home; party; with 2 or more others; with romantic partner; with relatives; with kids; age differences �7
Wedding party at a fancy

restaurant
Party; wedding or formal party; restaurant; dancing; alcohol; with 2 or more others; with friends; with romantic

partner; with kids; age differences �7
Party in a restaurant that has a bar Party; bar; restaurant; dancing; alcohol; with 2 or more others; with friends; with strangers; with potential date
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generated, 72% of the time the model generated a behavior that
was initially paired with the situation during training, again a rate
much greater than chance.

Validation 2: Sensitivity of the model to changes in situational
features. We examined the sensitivity of the model to minor
changes in situational features by creating three variations of each of
the 15 training situations (see Table 5). A typical variation would add
one or two features and remove one or two. After training on the
original 15 situations, the model was then tested on a random se-
quence of the 45 modified situations, using accommodation. We
recorded the first three behaviors that were activated in response to
each situation and coded whether the modified situation activated the
behavior that corresponded to the original unmodified situation. Five
random initializations were trained and tested as above.

Results. The model was fairly robust, with little decline in
performance (See Table 6). For the first behavior generated in
response to the modified situations, 92% of the time the model
generated a behavior that was paired with the matching original
situation during learning and for the first three behaviors gener-
ated, 74.4% of the time an appropriate behavior was generated.

Personality simulations. The model successfully learned. We
now examine its ability to capture major aspects of human per-
sonality. First, in Simulations 1–4, we tested the ability of the
model to capture several aspects of the broad factors of extraver-
sion and neuroticism, by manipulating different parameters of the
approach and avoidance layers. In Simulation 1, varying the sen-
sitivity of the approach and avoidance layers to situational cues
allows us to capture broad aspects of the impact of extraversion
and neuroticism on behavior. In Simulation 2, we showed how
recent work by Cacioppo, Gardner, and Berntson (1997) on pos-
itive and negative evaluative systems, could provide a more de-
tailed model of extraversion and neuroticism, by helping to better
specify the parameters of the two motive systems: a positivity
offset (approach layer) and negativity bias or gain (avoidance
layer). In Simulation 3, we show that other aspects of extraversion
and neuroticism can be modeled in terms of differences in strength
of learning in response to the reward and punishment value of
situations. In Simulation 4, we examined whether extraversion
(approach) and neuroticism (avoidance) necessarily have orthog-
onal influences on behavior or whether they could have an inter-
active, nonlinear impact. Following this, in Simulation 5 we show
that the general factor of disinhibition and constraint can be
modeled by differences in the strength of inhibition among mo-
tives in the approach and avoidance layers. In Simulation 6, we
show that the impact of individual traits on behavior can be
modeled in terms of patterns of individual differences in the

chronic activation of specific motives and personal resources.
Further, in Simulations 6 and 7, we demonstrate how the model
can capture person–situation contingencies. Simulation 7 also ad-
dresses Fleeson’s (2001, 2007) work showing that the magnitude
of intraindividual variability in personality related behaviors is
equivalent to the magnitude of interindividual variability in per-
sonality traits. Finally, in Simulation 8 we show that the model can
capture aspects of other specific traits, specifically Downey’s
concept of rejection sensitivity (Downey & Feldman, 1996;
Romero-Canyas & Downey, 2005).

Simulation 1: Extraversion and Neuroticism: Impact of dif-
ferences in sensitivity of the approach and avoidance layers on
approach and avoidance behaviors. We tested whether manip-
ulating the sensitivity of the motive layers enables us to model
individual differences in approach and avoidance motivation. We
manipulated sensitivity with the excitatory conductance parameter
(g_bar_e) on the motives in the approach and avoidance layers
after training but before testing. Higher excitatory conductances
have a multiplicative effect on the strength of inputs and should
lead to increased impact of those motives on behavior.

Gains were set at 100 on both layers for all simulations. The
comparison condition was one of the initializations of Test 1 and
had default excitatory conductances of 1 for both layers. Four other
conditions were constructed with excitatory conductances as fol-
lows (approach listed first): 1.2 and 0.8, 1.1 and 0.9, 0.9 and 1.1,
and 0.8 and 1.2.

We coded a behavior as approach versus avoidance on the basis
of the relative number of approach versus avoidance goals with
which it was paired during training. Twenty-eight of the behaviors
were related only to approach goals during training, five were
related to more approach goals than avoidance goals, seven were
related only to avoidance goals, and one was related to more
avoidance than approach goals. Finally, one behavior was paired
with one approach and one avoidance goal, and one behavior was
not paired with any goals.

With accommodation on the behavior layer, we input each of the
15 training situations, recorded the first 3 behaviors generated in
response to each situation, and then coded the number of approach
and avoidance behaviors activated in different conditions. We also
recorded the average activation level for each layer, averaged
across the 15 situations.

Results. The average activation of the two layers was strongly
influenced by their sensitivities (see Table 7). For the approach
layer, the average activation ranged from 0.000 when the conduc-
tance was 0.8 to 0.200 when the conductance was 1.2. For the
avoidance layer, the average activation ranged from 0.123 when
the conductance was 0.8 to 0.234 when conductance was 1.2.

Further, the relative sensitivities had a strong impact on the
likelihood of generating approach and avoidance related behaviors
(See Table 7). When the approach excitatory conductance was 1.2
and avoidance was .8, 87% of the behaviors were approach related,
whereas when the excitatory conductance was 0.8 for approach
and 1.2 for avoidance, 44% of the behaviors were approach re-
lated. Since so many more of the behaviors were approach related,
it is not surprising that even when the avoidant layer had a higher
conductance, many of the behaviors were approach related.

The impact of the relative sensitivities of the two motivational
layers on the relative frequency of approach and avoidance related
behaviors is consistent with a large literature on the impact of

Table 6
Results of the Validations

Validation
Correct

behaviors Errors
Percentage

correct

1
First behaviors 75 5 93.3%
Total behaviors 311 87 72.0%

2
First behaviors 225 18 92.0%
Total behaviors 891 228 74.4%
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extraversion and neuroticism on approach and avoidance related
behaviors. Individuals high on Neuroticism are more likely to be
socially withdrawn (Clark & Watson, 2008; John, Nauman, &
Soto, 2008; Widiger & Smith, 2008), whereas individuals high on
Extraversion are more likely to be socially involved and spend
more time with people (Mehl, Gosling, & Pennebaker 2006;
Watson & Clark, 1997). Further, Avila and Torrubia (2008) re-
viewed literature indicating that individuals high in avoidance are
more vigilant to threat related stimuli, whereas individuals high in
Approach are more vigilant to cues indicating reward.

Gable and her colleagues (Gable, Reis, & Elliot, 2000; Elliot,
Gable, & Mapes, 2006) have extensively examined the impact of
approach and avoidance social goals on social interaction. Gable,
Reis and Elliot (2000), using Carver and White’s (1994) BIS–BAS
scale, found that BAS predicted the frequency of positive social
events, although BIS did not predict the frequency of negative
social events. Elliot, Gable, and Mapes (2006) measured specific
social approach and avoidance goals (not general BIS and BAS).
They found that friendship approach goals positively predicted
frequency of positive events, whereas friendship avoidance goals
positively predicted frequency of negative events. Further, friend-
ship approach goals negatively predicted frequency of negative
events, whereas friendship avoidance goals did not predict fre-
quency of positive events.

Simulation 2: Positivity offset and negativity bias in the
approach and avoidance systems. Recent work by Cacioppo,
Gardner, and Berntson (1997) suggested that the approach and
avoidance systems might differ both in their sensitivities and in
their baseline activations. They argued that positive and negative
evaluation do not form a single bipolar dimension, but instead
should be conceptualized in terms of separate dimensions and
separate systems for positive and negative activation (also see
Cacioppo, Gardner, & Berntson, 1999; Ito & Cacioppo, 2000,
2001). This is consistent with our model’s separate approach and
avoidance layers.

They further argue that the two systems have different func-
tional forms, with a positivity offset and a negativity bias. Posi-
tivity offset means that the positive evaluation system has a some-
what higher baseline activation than does the negative evaluation
system. Thus, in the presence of weak or no inputs, the positive
evaluation system will be more highly activated than the negative
evaluation system. Negativity bias means that the negative evalu-
ation system is much more sensitive to input. Each unit of input to
the negative evaluation system results in a higher level of output
than does the same unit of input to the positive evaluation system.

Thus, in the absence of strong situational cues, there will be a
mild positive evaluation and a tendency to approach or explore
interesting things. However, as the strength of situational cues
increases, the negativity bias means that the negative evaluation
system will respond more strongly to negative cues than the
positive evaluation system will to equally strong positive cues.
One can visualize this in terms of what happens as an individual
moves closer to a goal object with both rewarding and punishing
features (for example, in classic work on approach–avoidance
conflicts by N. E. Miller, 1959, a rat approaches a goal object with
both positive and negative features.) When the individual is far
away, the inputs from both positive and negative cues will be
fairly weak, and the positivity offset should lead to stronger
approach motivation than avoidance motivation. But as the
individual gets closer to the goal and the inputs get stronger, at
some point the negativity bias results in the avoidance motiva-
tion being stronger.

To simulate positivity offset, we set the baseline activation of
the approach layer higher than that of the avoidance layer, by
changing the resting Vm of nodes in a layer, using the Vm_init
parameter, which controls the resting Vm (the default activation of
the node in the absence of specific inputs). In Leabra, nodes send
activation only when the Vm exceeds the threshold value � (see
Equation 1). Thus, if the threshold is constant, higher baseline
activations reduce the distance to threshold, reducing the input
needed to fire. In the current simulations, the Vm _init for the
approach layer was .27, and for the avoidance, layer it was .20,
with the threshold (�) for the goal layers set at .3.

To capture negativity bias for avoidance, we manipulated the
maximum excitatory conductance g�e for the avoidance nodes. This
parameter has a multiplicative effect on the impact of the incoming
excitation. Conductance g�e applies to the entire range of excitatory
inputs, affects the Vm of the node, and thus, can influence the
likelihood that a node will exceed threshold and fire. In this
simulation, g�e for the approach layer was 0.9 and for the avoidance
layer, 1.2. We used a gain of 100 for both motivational systems.

We manipulated the strength of the input cues to the two goal
layers by scaling the strength of the weights from the situational
layer to the goal layers, with a parameter in Leabra for scaling the
strength of the links between two layers. We took the hidden layer
between the situational inputs and the goal layers and varied the
weight scaling from this hidden layer to the goal layer across three
levels: 0.5, 1, and 1.5. The scaling factor is multiplied by the
existing weights to give the acting weights. (This is simply a way

Table 7
Results of Simulation 1: Effect of Differences in Sensitivity of Approach and Avoidance Systems

BAS g _bar_e BIS g _bar_e
Number of approach

behaviors
Proportion of

approach behaviors
Number of

avoidance behaviors
Average BAS

activation
Average BIS

activation

0.8 1.2 20, 1 N 44% 24 .000 .234
0.9 1.1 25, 4 N 56% 16 .005 .220
1.0 1.0 22, 4 N 49% 19 .061 .200
1.1 0.9 35, 1 N 78% 9 .142 .172
1.2 0.8 39 87% 6 .200 .123

Note. N stands for behaviors that are equally associated with approach and avoidance goals. BIS � behavioral inhibition systems; BAS � behavioral
approach systems.
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to capture the effect of getting closer to a stimulus on the strength
of the stimulus cues. This does not have any theoretical relevance.)

We presented the network with each of the 15 test situations and
recorded the number of avoid behaviors that were activated in
response to each weight scaling. Here, as in the previous simula-
tion, an avoid behavior is defined as a behavior that was paired
with more avoid goals than approach goals during initial learning.

Results. With a weight scaling of .5, one out of 15 behaviors
were avoid behaviors, with a weight scaling of 1, seven out of 15
behaviors were avoid behaviors, and with a weight scaling of 1.5,
seven out of 15 behaviors were avoid behaviors. Thus, as the
strength of the inputs increases, the relative impact of the avoid
layer also increases. This is consistent with Cacioppo, Gardner,
and Berntson’s (1997) characterization of the positive and negative
evaluation systems.

Ito and Cacioppo (2005) have recently provided evidence for
individual differences in the strength of both positivity offset and
negativity bias and for their impact on the evaluation of social
stimuli. Individuals with higher positivity offset formed more
positive impressions of a neutrally described target, whereas indi-
viduals with stronger negativity bias formed more negative im-
pressions of negatively described targets.

Simulation 3: Extraversion and Neuroticism: Impact of indi-
vidual differences in reward and punishment values on learning
approach and avoidance behaviors. Individuals differ in the
extent to which they experience the same event as rewarding or
punishing. This should influence learning and lead to individual
differences in the likelihood of approach and avoidance oriented
behaviors. In a large literature on reinforcement learning (e.g.,
Sutton & Barto, 1998), researchers have examined both the neu-
robiological and computational foundations of such learning (e.g.,
O’Doherty, Buchanan, Seymour, Raymond, & Dolan, 2006;
O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Schönberg,
Daw, Joel, & O’Doherty, 2007; Schultz, Dayan, & Montague,
1997). The idea is that the organism learns to predict whether
outcomes will be rewarding or punishing by using prediction error,
the difference between the predicted reward or punishment and the
actual outcome, to update its prediction. Moreover, a growing
body of work indicates that firing levels of dopaminergic neurons
indicate the level of prediction error for reward. How punishment
prediction error is signaled is very much an open question.

To examine the impact of differential reward and punishment
sensitivity, we manipulated the magnitude of reward and punish-
ment value during initial training by varying the training activa-
tions for target goals in the approach and avoidance layers in three

simulations: in Simulation 1, training values were 1.0 for approach
goals and .4 for avoidance goals, in Simulation 2, training values
were .4 for approach goals and 1 for avoidance goals, and in a
baseline simulation, approach and avoidance goal values were both
set at .7.

To enable the network to be sufficiently sensitive to the changes
in reward and punishment values, we set the gain for both layers
to 20 rather than 100 as in the preceding simulations. Experimen-
tation indicated that with higher gains the model was less sensitive
to differences in reward and punishment value. This evidently
occurs because higher gains tend to make the nodes behave more
like binary neurons rather than have a continuous value.

To test the network, we used the 15 training situations, with
accommodation on, and recorded the first three behaviors activated
in response to each testing situation, resulting in 45 behaviors. We
then coded how many behaviors were approach oriented and how
many were avoidance oriented, as described previously. In addi-
tion, we summed the total activation across the approach and
avoidance goal layers to look for differences in summed activation.

Results. The manipulations of punishment and reward values
had the expected effect (see Table 8). As the relative reward/
punishment values shifted from approach 1, avoidance .4 to ap-
proach .4, avoidance 1, there was an increase in the number of
avoidance behaviors from 6/45 (13%) to 15/45 (33%). Further, the
summed activations of the approach and avoidance nodes showed
a corresponding shift from approach 1.64, avoidance .95 to ap-
proach .69, avoidance: 1.63. Thus, the manipulation of the reward
and punishment values during learning did have a consistent effect
on level of activation of the corresponding goal layers and on the
corresponding type of behavior.

The results for avoidance are consistent with considerable work
showing that those high in BIS or neuroticism learn responses to
punishing cues faster than individuals low in BIS or anxiety (e.g.,
Zinbarg & Mohlman, 1998; for a review see Avila & Torrubia,
2008) and develop stronger negative expectations. Although the
evidence for BAS impact is not as consistent, Pickering and
Smillie (2008) and Smillie, Pickering, and Jackson (2006) have
recently reviewed the evidence indicating that higher BAS sensi-
tivity leads to stronger learning of rewarded cues.

Some of the clearest evidence of the impact of individual
differences in BIS and BAS on reward and punishment learning is
provided by Smillie, Dagleish, and Jackson (2007). They showed
that higher BAS leads to greater response-sensitivity to rewarded
stimuli, measured by a signal detection analysis, and higher BIS
leads to greater sensitivity to punished stimuli.

Table 8
Results of Simulation 2: Individual Differences in Sensitivity to Reward and Punishment Value

Variable

Reward and punishment values during training

Approach: 1.0
& Avoid: 0.4

Approach: 0.7
& Avoid: 0.7

Approach: 0.4
& Avoid: 1.0

n % n % n %

Number of avoidant behaviors 6/45 13 13/45 29 15/45 33
Summed activation of approach layer 1.640 .96 0.69
Summed activation of avoidance layer 0.95 1.07 1.63
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Schönberg, Daw, Joel, & O’Doherty (2007) showed that there
are strong individual differences in the extent to which individuals
generate reinforcement learning signals when learning reward-
based decision tasks and that the strength of this signal is posi-
tively related to reward learning. Individuals who exhibit strong
prediction error signals in the striatum better learn to make the
optimal rewarded choice in a decision making task. Although this
work only addresses reward, it suggests that the approach and
avoidance systems might influence behavior through their effect
on the strength of reward and punishment cues and their impact on
learning.

Discussion of Simulations 1, 2, and 3. In Simulations 1, 2,
and 3, we examined how individual differences in approach and
avoidance systems may influence behavior. In Simulations 1 and
2, we studied the impact of differences in sensitivity of the two
systems to inputs that signal potentially rewarding versus punish-
ing outcomes. In Simulation 2, we also tested the impact of
differences in baseline activation. In Simulation 3, we examined
whether the development of individual differences in behavior
could be due to differences in the extent to which outcomes are
seen as punishing or rewarding during learning.

However, in these simulations, all responses by the network
receive feedback. But what if the feedback were contingent on the
type of behavior, as is frequently the case? Eiser, Fazio, Stafford,
and Prescott (2003) noted that in the real world, approach and
avoidance behaviors typically provide asymmetric information:
Approach behaviors, which involve interacting with the situation,
typically result in feedback as to whether the situation is rewarding
or punishing. In contrast, successful avoidance behaviors mean
that the organism does not interact with the situation and fails to
receive feedback.

To examine this potential asymmetry, Eiser et al. (2003) con-
structed a connectionist network that chose whether or not to “eat”
a “bean” (approach or avoid the bean) that was potentially either
good or bad and that then learned to categorize the beans as good
or bad, based on feedback when it “ate” a bean (no feedback was
received when it did not “eat”). Receiving feedback only when it
“ate” a bean led to asymmetries in learning whether beans were
good or bad. The network learned to evaluate bad beans perfectly,
whereas they often categorized good beans as bad, thereby giving
up the opportunity to attain a rewarding outcome. For the bad
beans, if the individuals choose the bean, they get punished, and if
they avoid the bean, they keep their initial negative expectancy.
However, for good beans, if they choose them, they get rewarded,
whereas if they avoid them because they think they are bad, they
do not learn otherwise. Fazio, Eiser, and Shook (2004) showed this
same learning asymmetry with people.

In a further simulation, Eiser et al. (2003) showed that increas-
ing the likelihood of the network choosing a bean (approaching)
increased accuracy in categorizing good beans. (Fazio, Eiser, &
Shook, 2004, showed the same pattern with people.) However, the
down side of making the network more approach oriented was that
it was more likely to “die” from eating too many bad beans.

Although they did not examine individual differences in
approach and avoidance orientation, this work suggests that
such differences could influence learning asymmetries. Com-
pared with approach oriented individuals, avoidance oriented
individuals, because they avoid potentially negative situations,
will be less likely to correct misconceptions and will miss some

rewarding situations. However, Eiser et al.’s (2003) simulation,
in which more approach oriented networks were more likely to
“die” from encountering too many bad beans, suggests that in
dangerous environments, being more approach oriented may
not always be the best option.

Simulation 4: Interactions between approach and avoidance
in the control of behavior. A further implication of the current
model is that the influence of the approach system and the
avoidance system on behavior should not necessarily be addi-
tive, as the systems compete with each other for the control of
behavior (e.g., Pickering & Gray, 1999). Thus, one might often
expect nonlinear relationships between the two systems. For
example, suppose the approach system is initially more active,
but then the activity of the avoidance system increases until it
is more active. Because the approach and avoidance systems
compete for the control of behavior, as the relative strength of
the avoidance system increases there will be a sudden shift to
avoidance behavior. This is relevant to understanding how
extraversion and neuroticism could interact.

One example of such a nonlinear relationship between extraver-
sion and neuroticism might be found at a party where, as long as
the approach motivation is higher than the avoidance motivation,
an individual will be fairly sociable, but then at some point as the
avoidance motivation increases (social anxiety increases), there
will be a sudden shift to avoidant behaviors, such as staying at the
periphery of the action, being silent, or even leaving. The point of
the current simulation was to demonstrate that our model could
capture such nonlinearity.

We held approach activation constant but varied the avoidance
activation from being less than approach to being considerably
more. We did this by setting g�e (excitatory conductance) at 1 for
the approach layer and then manipulating g�e for the avoidance
layer, starting at 0.8 and increasing it in steps of 0.1 to 1.6. We
used the default gain of 100 for both goal layers, with accommo-
dation on.

Results. We used two situations out of the set of 15 (“party at
work” and “party at restaurant”) that activated both approach and
avoid related goals. We recorded the behaviors and the average
layer activation for each situation and for each level of g�e for the
avoidance system. As can be seen in Table 9, for both situations,
as g�e increased for the avoidance system, there were sudden
increases in avoidance activation and a sudden shift from sociable
behaviors (e.g., drink alcohol, gossip, dance) to avoidant, nonso-
cial behaviors (e.g., leave, be silent, stay at periphery). We con-
sider the implications of this nonlinear relationship in the Discus-
sion section.

Simulation 5: Disinhibition and constraint and behavioral
switching or impulsivity. We tested whether our model could
capture aspects of disinhibition and constraint (related to Consci-
entiousness) by varying the level of inhibition on both motives and
behavior. First, we wanted to confirm that higher inhibition led to
lower overall activation of the motive layers. Second, and more
importantly, we tested whether higher inhibition would reduce the
sensitivity of the network to changing inputs and reduce the
likelihood that the network would switch to different behaviors.
That is, with higher inhibition, would the network be more likely
to stay focused on a current goal as the situational cues changed
than to switch to new goals and behavior?
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To examine the impact of inhibition on switching behavior,
we did the following. First, for both motive layers we manip-
ulated the k parameter for the kWTA average algorithm to be
either k � 1 nodes active on average (high inhibition) or k � 4
(low inhibition). Second, we allowed the previous state of the
network in response to earlier situations to influence subsequent
states of the network when it was exposed to new situations. In
everyday life, when one is exposed to a new situation, there is
residual activation from the previous situation. For example, if
one is sitting in one’s office alone, working, and someone then
walks by the open door, one’s response will be partially influ-
enced by one’s previous state. To capture this, we set to .5 the
Leabra�� parameter for the proportion of activation that car-
ries over from a previous exposure to an input. Every time the
network was exposed to a new situation, half of the activation
of each node in response to the previous situation was carried
over to the activation of the same node. When this parameter is
set to 0, the default, no activation carries over.

What this carryover of activation means for the impact of
inhibition is the following: when k � 1 then on average only the
activation from one motive in a layer will be carried over to
the new set of activations, whereas when k � 4 then on average
the activation from four motives will be carried over. (kWTA
sets the activation of losers to close to 0.) As a result, as the
network is exposed to the sequence of situations, the network in
the high inhibition condition (k � 1) receives influence from
only one motive in each layer, on average, whereas the network
in the low inhibition condition (k � 4) received carryover
activation from four motives in each layer, on average. Thus,
the network in the high inhibition condition is responding to a
more restricted set of motives. As a result, the network in the
high inhibition condition should show less switching.

We then exposed the network to the sequence of 15 testing
situations and recorded what behavior was activated. We then

determined whether the activated behavior changed when a new
testing situation was presented or whether the activated behavior
stayed the same. If we count the first behavior activated in re-
sponse to the first situation as one then there are 15 possible
behavior changes across the 15 situations. We also summed the
activations over each layer and then over each of the 15 events.
This was done for five different initializations of the network.

Results. Manipulating the level of inhibition had a consistent
impact on both the overall activation of the motive layers and the
tendency of the network to switch among behaviors (see Table 10).
Overall activation in both layers was considerably lower in the
high (k � 1) inhibition condition compared with the low inhibition
condition (k � 4). Further, there was less switching among behav-
iors in the high inhibition condition. The only exception was in
Initialization 2, for which in the low inhibition condition, the
network seems to have gotten “stuck” in the same behavior for all
the situations.

Thus, inhibition (as operationalized by the k parameter) does
affect the extent to which the network remains focused on a goal
and behavior (constrained) versus switching to a new goal and
behavior (disinhibited). This suggests that the model can capture at
least some aspects of impulsivity: When inhibition is low, the
network is more prone to switch to a new goal. Consistent with our
argument that this inhibitory process captures part of conscien-
tiousness, Nigg et al. (2002; also see Clark and Watson, 2008)
have shown that low conscientiousness predicts attention-deficit/
hyperactivity disorder, specifically attentional and organizational
problems.

Simulation 6: Role of individual motives in defining specific
personality traits. In the preceding, we tested general character-
istics of the model, such as the behavior of the approach and
avoidance layers, how they could capture aspects of the two broad
factors of extraversion and neuroticism, and whether aspects of the
general factor of disinhibition and constraint could be captured by

Table 9
Simulation 4: Results of Simulation of Interaction Between BIS and BAS in the Control of Behavior

BIS g _bar_e Behaviors Average BAS activation Average BIS activation

Party at work

0.8 Tease and make fun, drink alcohol, gossip 0.121223 1.73E-14
0.9 Tease and make fun, drink alcohol, gossip 0.121223 8.36E-06
1.0 Tease and make fun, drink alcohol, order others 0.119589 0.0700957
1.1 Tease and make fun, introduce self, be silent 0.123967 0.108918
1.2 Gossip, tell jokes, give in 0.142863 0.164092
1.3 Drink alcohol, leave, introduce self 0.101414 0.389281
1.4 Leave, introduce self, improve skills 0.0881733 0.408919
1.5 Leave, introduce self, improve skills 0.0829425 0.42897
1.6 Leave, introduce self, improve skills 0.0914679 0.446203

Party at restaurant

0.8 Tease and make fun, dance, ask other to dance 0.161413 6.08E-16
0.9 Tease and make fun, insult others, ask other to dance 0.161414 1.20E-06
1.0 Tease and make fun, drink alcohol, explore environment 0.121996 0.103078
1.1 Insult others, explore environ, gossip 0.124009 0.110283
1.2 Tell jokes, steal, drink alcohol 0.135796 0.200727
1.3 Stay at periphery, compliment others, explore environ 0.155491 0.215646
1.4 Stay at periphery, be silent, introduce self 0.153316 0.220754
1.5 Stay at periphery, be silent, introduce self 0.151624 0.22454
1.6 Stay at periphery, be silent, introduce self 0.128478 0.335672

Note. BIS � behavioral inhibition systems; BAS � behavioral approach systems.
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inhibitory processes. Here, we focus on capturing more specific
traits by manipulating specific goals and resources, consistent with
L. C. Miller and Read’s (L. C. Miller & Read, 1991; Read &
Miller, 1989) goal-based model of personality.

We created six distinct personalities by manipulating the biases
on goals and resources that theory suggested should be central to
a corresponding trait. The six traits form three pairs (sociable–shy,
confident–anxious, industrious–lazy), corresponding to one of
three major dimensions of the Big Five: Extraversion (sociable–
shy), Neuroticism (confident–anxious), and Conscientiousness
(industrious–lazy). These dimensions also correspond to the three
major dimensions in Eysenck’s (1983, 1994) Extraversion, Psy-
choticism, and Neuroticism (EPN) and in Tellegen’s (1985)
model. Manipulating the biases on goals and resources changes the
baseline activation of the corresponding nodes.

The biases for the six traits are in Table 11. For example, consider
the representation of the trait sociable. The biases for the approach
goals of friendship, being liked, sex and romance, exploring, and fun
are set well above 0, and the goal of dominance is set below 0.
Further, the biases for the avoidance goals of avoid rejection and/or
embarrassment and avoid interpersonal conflict are set above 0. Fi-
nally, the biases for the resources of social skills, things to talk about,
wit, quick thinking, face-saving skills, and intelligence are set above
0. The specific biases for the different traits were the result of
discussion among Stephen J. Read, Brian M. Monroe, Aaron L.
Brownstein, Yu Yang, and Gurveen Chopra as to which goals and
resources characterized an individual with each of the six traits.

Our goal is to provide an initial demonstration that differences
in the chronic activation of relevant goals and resources can
plausibly capture individual traits. For this purpose it is most
important to arrive at a plausible representation of traits, rather
than a precisely accurate one. We aim to show that if one repre-
sents traits in this way, one gets behavioral responses to situations
that are consistent with the relevant trait. Assuming that we can
demonstrate this, further work should allow for improvement in
the precision of the representations.

To test the result of defining traits in this way, we ran six
simulations, each with a different patterns of biases that corre-
sponded to one of the six traits. For each simulation, we tested with
the 15 training situations and recorded which behaviors were
activated across the 15 situations.

Results. The behaviors generated in response to each of the
fifteen situations for each of the six traits can be seen in Table 12.
The extent to which each of the generated behaviors exemplifies

the relevant trait dimension is plotted in Figures 2A, B, and C.
There is one figure for each trait pair and its corresponding
dimension: Extraversion, Conscientiousness, and Neuroticism. Sit-
uations are ordered along the x-axis and sorted into the two groups
of work situations (1–9) and social situations (10–15). Situations
8 and 9 are somewhat mixed, as 8 is a party at work and 9 is a
social engagement at the boss’ house. Within the work situations,
they are ordered both in terms of how work oriented they are (1 �
break by yourself, 2 � break with others, versus active working)
and how many others are present (3 � individual assignment, 4 �
working with one other, 5 � working together, urgent project, 6 �
group meeting, and 7 � review with boss). Within the social
situations, they are ordered in terms of whether they are romantic
or not (10 � trying to get a date, 11 � on a date, 12 � at a dance,
13 � party at a restaurant, 14 � wedding reception, 15 � family
birthday). The y-axis represents how strongly the behavior exem-
plifies the relevant trait. For the sociable–shy pair, the y-axis
represents how Extraverted the behaviors are on a scale from 1
(highly introverted) to 10 (highly extraverted). For the confident–
anxious pair, the axis represents how anxious–avoidant (Neuroti-
cism) the behaviors are on a scale ranging from 1 (not at all
anxious–avoidant) to 10 (highly anxious–avoidant) and for the
industrious–lazy pair, the y-axis ranges from 1 (not at all consci-
entious) to 10 (highly conscientious). Ratings were obtained by
having four of the authors rate all 43 behaviors on each of the three
dimensions and then averaging the rating for each behavior.

As expected, networks with different personalities exhibited
quite different patterns of behavior in response to the 15 situations.
For example, sociable personalities (see Figure 2A) tended to
behave in a more extraverted fashion in work situations when
others were present and in social situations, particularly romantic
situations, than did shy personalities. It is interesting to note that
the sociable and shy personalities did not differ in the individual
assignment situation, when there is no one else present, and in the
wedding and family birthday situations, when there are familiar
others present. This pattern is consistent with the idea that behavior
is a function of both personality and the situation and that there is
often an interaction between personality and situation, such that
individual differences in some situations are nonexistent in others.

Confident personalities (see Figure 2C) exhibited much less
anxious behavior in many of the social situations than did anxious
personalities. However, there were no real differences in the anx-
iousness of behaviors in the work related setting, although in
general, in work situations, the confident personalities put extra

Table 10
Simulation 5: Disinhibition and Constraint: Results of Impact of Variations in Inhibition

Initialization

Low inhibition High inhibition

Behavior
change

Approach
activation

Avoidance
activation

Behavior
change

Approach
activation

Avoidance
activation

1 10 27.6 29.0 7 4.9 5.4
2 2 32.8 32.4 8 4.2 5.3
3 8 33.5 33.5 6 10 1.7
4 8 30.7 27.9 5 4.2 3.7
5 11 25.4 26.4 6 11.1 0.4

For low inhibition, k � 4. For high inhibition, k � 1.
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effort into their job, whereas the anxious personalities simply did
their job. This pattern of interaction between type of situation
(work versus social) and personality trait again indicates that this
model might be able to capture important aspects of person–
situation interactions in human personality.

The lazy and industrious personalities also exhibited somewhat
different patterns of behavior (see Figure 2B), with the industrious
individual consistently either trying to find a new way to do their
job or putting extra effort into their job, with the single exception
of asking someone to dance at a dance. In contrast, the lazy person
exhibited much less effort, doing such things as procrastinating,
kissing up, drinking alcohol, or doing their job in a situation where
the industrious individual was exhibiting extra effort.

Despite these consistent differences between lazy and industri-
ous individuals, it is interesting that both the industrious and lazy
individual did ask someone to dance when they were at a dance.
This is an example in which the situational press is sufficient to
over ride strong individual differences. These results again provide
an example of person–situation interactions.

Simulation 7: Interindividual versus intraindividual variability
in personality. Fleeson (2001, 2007) has examined the relative
magnitude of interindividual and intraindividual variability in person-

ality and found that for major factors of the Big Five, the variability
within an individual in personality related states is typically of the
same magnitude as the variability in personality traits between differ-
ent individuals. Further, he has shown that this within person vari-
ability can be explained by situational contingencies. For example,
variability in extraverted states is contingent upon characteristics of
specific situations, such as the number of people present or their
relationship to the subject (Fleeson, 2001, 2007).

This contingency between situational features and trait related
behavior is conceptually similar to the results in Simulation 6. In
that simulation, traits are defined in terms of goals and resources
and behavior is partially a function of the extent to which situa-
tional features activate different goals. In Simulation 6, we found
that there were typically high levels of variability from situation to
situation in expression of trait related behavior.

In Simulation 6, we simulated midlevel traits (i.e., sociable–shy,
confident–anxious, industrious–lazy) taken from three of the Big
Five. Here, we simulate a broader trait dimension, specifically the
communal component of Extraversion, by manipulating both the
conductances of the approach and avoidance layers and the bias
weights of the communal goals in the approach layer: friendship,
sex–romance, be liked, help others, and fairness–equality–justice.

Table 11
Simulation 6: Settings of Goals and Resources for Simulation of Individual Personality Traits

Goal Sociable Shy Confident Anxious Industrious Lazy

Approach goals
Friendship 1.5 0 0 0 0 0
Sex and romance 0.6 0 0 0 0 0
Be liked 1.5 0 0.6 0 0 0
Help others 0 0 0 0 0 �0.9
Dominance �0.6 0 0.6 0 0 0
Achievement 0 0 0.9 0 2.1 �0.9
Exploring 0.6 0 0.9 �0.9 0 �0.3
Fun 0.9 0 0 0 0 0.9
Mastery 0 0 0.9 0 2.1 �0.9
Fairness, equality, justice 0 0 0 0 0 0
Uniqueness 0 0 0 0 0.9 0
Material gain 0 0 0 0 0.9 0

Avoid goals
Rejection or embarrassment 0.9 1.8 �0.6 1.2 0 0
Guilt 0 0 �0.6 1.2 0 �0.6
Failure 0 0 �0.9 1.2 1.8 �0.6
Harm physical 0 0 �0.6 1.2 0 0
Loss of control 0 0 �0.6 1.2 0 0
Interpersonal conflict 0.6 1.8 �0.6 0.9 0 0
Effort 0 0 �0.6 0 �0.9 2.1
Risk uncertainty 0 0 �0.6 1.2 0 0

Resources
Social skills 2.1 0 1.8 0 0 0
Things to talk about 2.7 0 1.2 0 0 0
Money 0 0 1.2 0 0 0
Attention span 0 0 1.8 0 1.2 0
Job skills 0 0 2.4 0 1.8 0
Face saving skills 0.9 0 0.9 0 0 0
Time 0 0 0 0 1.8 0.9
Intelligence 0 0 2.4 0 1.8 0
Quick thinking 1.2 0 1.8 0 0.9 0
Wit 0.6 0 1.8 0 0 0
Status 0 0 2.4 0 0 0
Happy 0 0 0 0 0 0
Mellow 0 0 0 0 0 1.8
Depressed 0 0 0 0 0 0
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Our goal with this simulation is to demonstrate the same kind of
intraindividual variability and the same kind of situational contin-
gency that Fleeson (2001, 2007) has demonstrated. For our intro-
verted individual, we left all goal bias weights at baseline, and we
set the approach excitatory conductance at 0.9 and the avoidance
excitatory conductances at 1.1. For our extraverted individual, we
increased the bias weights to the communal goals to 2.1, and we set
both the approach and avoidance excitatory conductances to 1.0. As in
Simulation 6, we presented the 15 testing situations and recorded
which behavior is most strongly activated for each situation.

Results. The behaviors generated in response to each situation
can be seen in Table 13, and the extent to which each behavior
exemplifies Extraversion can be seen in Figure 3. The ratings of the
behaviors on Extraversion are the same as the ratings used in the
sociable–shy simulation in Simulation 6. As can be seen, there are
both substantial differences between the extraverted and introverted
individual, as well as substantial variability across situations for the
extravert.

Fleeson (2007) has argued that the role of situational contingen-
cies in within person variability can be understood in terms of the
if–then, person–situation contingencies in Mischel and Shoda’s
(1995, 1998) CAPS model. However, he did not provide a com-
putational example. The current simulation demonstrates that our
model can provide a computational implementation of Fleeson’s
point.

Simulation 8: Rejection sensitivity. Earlier simulations fo-
cused on relatively broad personality characteristics, ranging from
broad Big Five factors, to more midlevel subcomponents of those
factors, such as sociability and industriousness. Here we focus on
a more specific personality characteristic, Downey’s concept of
rejection sensitivity (Downey & Feldman, 1996; Romero-Canyas
& Downey, 2005). Rejection sensitivity is the disposition to
readily perceive and strongly react to possible rejection cues in the
behavior of other people. Much of Downey’s (e.g., Downey &
Feldman, 1996) work has focused on the impact of rejection
sensitivity on attentional and affective responses to possible rejec-
tion cues, although some work has shown that rejection sensitive

individuals are likely to respond behaviorally to cues to rejection
with either hostility or social withdrawal.

Our current model has several avoid goals that are relevant to
rejection sensitivity, avoid social rejection and avoid interpersonal
conflict, and a number of behaviors that are relevant to social
withdrawal. However, we do not have any hostility related behav-
iors. Thus, in the current simulation, we focused on manipulating
bias weights on these two avoid goals and examining their impact
on withdrawal related behaviors.

For the rejection sensitive individual, we set the bias weights for
avoid social rejection and for avoid interpersonal conflict to an
elevated level of 2.1, whereas for the normal individual these were
left at baseline. For the rejection sensitive individual, the excita-
tory conductance for the approach layer was set at 0.9, and for the
avoidance layer, it was set at 1.2. For the normal individual, the
excitatory conductances were 0.9 and 1.1 respectively. Each net-
work then received the 15 standard situations, and the first behav-
ior activated was recorded.

Results. The behaviors generated in response to the 15 differ-
ent situations for both the rejection sensitive and the normal
individual can be seen in Table 14. As predicted, the rejection
sensitive individual responds to social situations by consistently
being socially withdrawn: they leave, they stay quiet, or they stay
at the periphery. In contrast, the normal individual performs a
much wider range of normal social behaviors. Thus, this simula-
tion indicates that the current model can capture more specific and
narrow range dispositions.

Admittedly, the situational features and behaviors in the current
model are only a rough approximation of what one would do if one
were designing a model that was specifically of rejection sensitiv-
ity. Instead of having cues such as the availability and number of
individuals or the nature of the social situation, ideally, one would
want a much more detailed representation that would allow one to
represent specific behavioral cues to possible rejection. Further,
one would like to be able to represent other behavioral responses,
such as hostility, as well as cognitive and affective responses.
Nevertheless, the current simulation demonstrates that one can

Table 12
Simulation 6: Behaviors Generated for Each Trait for Each of 15 Situations

Situation Confident Anxious Lazy Industrious Shy Sociable

Break by yourself Ask for date Surf web Procrastinate Find new way Procrastinate Tease and make fun
Break with coworkers Talk politics Ask other about

self
Procrastinate Find new way Tease and make

fun
Ask others about self

Individual assignment Extra effort Do job Do job Extra effort Extra effort Extra effort
Working with 1 other Extra effort Do job Do job Extra effort Ensure fairness Ask other to dance
Working together on

urgent project Extra effort Do job Extra effort Extra effort Ensure fairness Gossip
Group meeting Extra effort Do job Ensure fairness Extra effort Extra effort Gossip
Review with boss Extra effort Do job Kiss up Extra effort Ensure fairness Kiss up
Party at work Extra effort Leave Tease and make fun Extra effort Talk politics Tease and make fun
Social engagement boss

house
Extra effort Leave Extra effort Find new way Talk politics Ask others about self

Trying to get a date Self disclose Be silent Drink alcohol Find new way Pretend to work Kiss
On a date Self disclose Stay at periphery Drink alcohol Find new way Give in Kiss
Dance Ask other to dance Introduce self Ask other to dance Ask other to dance Introduce self Ask other to dance
Party, restaurant or bar Extra effort Drink alcohol Tease and make fun Extra effort Stay at periphery Kiss
Wedding, fancy restaurant Drink alcohol Leave Introduce self Find new way Introduce self Ask others about self
Family birthday Drink alcohol Clean up Confront other Find new way Tell jokes Gossip
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Figure 2. Simulation 6: Ratings for each of the generated behaviors for each of the three trait pairs: (A)
extraversion (sociable–shy), (B) conscientiousness (industrious–lazy), and (C) anxious/avoidant (neuroticism;
confident–anxious). w/ � with; proj � project.
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capture the basic features of rejection sensitivity by manipulating
the baseline activation of relevant motives.

Discussion

Summary of Simulations

We first demonstrated, in the validation simulations, that the
model successfully learned relationships between different situa-

tions and the behaviors that are appropriate in those situations. The
model is not learning to associate just a single behavior with a
single situation, but is learning many-to-many relationships: Any
situation is associated with several different behaviors, and con-
versely, any behavior is associated with several different situa-
tions.

Our second set of simulations showed the model’s ability to
capture different aspects of personality (See Table 15 for the key

Figure 3. Simulation 7: Extraversion ratings for generated behaviors for an extrovert versus an introvert. w/ �
with; proj � project.

Table 13
Simulation 7: Behaviors for Extrovert and Introvert

Input Extrovert behavior Introvert behavior

Break by yourself Clean-up Introduce self
Break with coworkers Introduce self Ask other about self
Dance Compliment other Ask other to dance
Family birthday Eat and drink Ask other about self
Group meeting Ensure fairness Ignore other
Individual assignment Clean-up Leave
On a date Compliment other Eat and drink
Party at work Introduce self Wear distinctive clothes
Party, restaurant or bar Compliment other Leave
Review with boss Mediate Kiss up
Social engagement boss house Introduce self Introduce self
Trying to get a date Compliment other Stay at periphery
Wedding, fancy restaurant Gossip Eat and drink
Working together on urgent project Stay with and comfort other Stay with and comfort other
Working with 1 other Clean-up Ensure fairness

Note. For extrovert, changing biases to 2.1 for all communal goals; g _e (approach) � 1.0; and g _e (avoid) �
1.0. For introvert, all baseline biases, g_e (approach) � 0.9 and g_e (avoid) � 1.1.
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parameters in these simulations). We first focused on the behavior
of the approach and avoidance goal layers, as they are central to
our model and to its ability to represent two major dimensions of
personality: extraversion and neuroticism. The relative sensitivity
of the two layers should play an important role in the model’s
ability to simulate individual differences. In Simulation 1, we
manipulated the relative sensitivities of the two layers by varying
the relative excitatory conductances for the approach and avoid-
ance layers, from 1.2 and 0.8, respectively, to 0.8 and 1.2, respec-
tively. As expected, as the relative sensitivity of the avoidance
layer increased, the average activation of the avoidance goals and
the frequency of activation of avoidance behaviors increased, and
conversely, as the relative sensitivity of the approach layer in-
creased, the average activation of the approach goals and the
frequency of approach behaviors increased. These results are con-
sistent with the idea that individuals with a more sensitive ap-
proach system should exhibit a broad pattern of approach related
or extraverted behavior, whereas individuals with a more sensitive
avoidance system should exhibit a broad pattern of avoidance
related or neurotic behaviors.

In Simulation 2, we examined potential differences in the acti-
vation dynamics of the approach and avoidance systems.
Cacioppo, Gardner, and Berntson (1997) have argued that positive
and negative evaluation systems (corresponding to approach and
avoidance systems) have somewhat different activation dynamics.
We gave the approach system a positivity offset; giving it a higher
baseline activation by increasing its baseline Vm, and we gave the
avoidance system a negativity bias by increasing its excitatory
conductance. As predicted, with weak input to the two layers, the
approach layer strongly influenced behavior, but as the strength of
the input increased, the avoidance layer had an increasing influ-
ence on behavior.

In Simulation 3, we examined the impact of individual differ-
ences in sensitivity to reward and punishment cues during learning
on approach and avoidance behaviors. This can be thought of as
examining the impact of initial temperament differences on

learned sensitivity to reward and punishment. As expected, higher
reward values for approach goals led to relatively more frequent
approach related behaviors, whereas higher punishment values for
avoidance goals led to more frequent avoidance related behavior.
Thus, the model successfully captures the potential impact of
initial differences in sensitivity to reward and punishment on
learning and the frequency of approach and avoidance related
behaviors.

In Simulation 4, we tested whether there were nonlinear rela-
tions between the approach and avoidance systems in generating
behavior. By holding the baseline sensitivity of the approach
system constant and varying the sensitivity of the avoidance sys-
tem from lower than the approach system to higher, we showed
that as the sensitivity of the avoidance system increased, the model
suddenly switched from producing approach related behaviors
(e.g., dance, tease/make fun) to avoidance related behaviors (e.g.,
stay at periphery, leave). Thus, this model clearly suggests that the
relationship between the approach and avoidance systems is inter-
active. Further, this simulation suggests that when the sensitivity
of the avoidance system is high enough, then it will largely prevent
the system from engaging in approach related behaviors. One
example of this would be in a social situation, where sufficiently
high levels of social anxiety would largely inhibit social approach
oriented behaviors.

In the first 4 simulations, we examined the ability of the model
to capture broad individual differences between extraversion (or
approach) and neuroticism–emotional stability (avoidance). In
Simulation 5, we showed that varying the level of inhibition in the
network resulted in behavior that was consistent with the concept
of disinhibition and constraint and with some aspects of impulsiv-
ity. Specifically, higher inhibition on the two motive layers led to
less sensitivity to changes in situational cues and a greater ten-
dency to remain focused on previously activated motives when
generating behavior.

In Simulation 6, we showed that we could model individual
differences in midlevel traits, by manipulating the underlying

Table 14
Simulation 8: Behaviors for Rejection Sensitive and Normal Individual

Situational input
Rejection sensitive

individual behaviors
Normal individual

behaviors

Break by yourself Introduce self Introduce self
Break with coworkers Be silent Ask others about self
Dance Be silent Ask other to dance
Family birthday Stay at periphery Ask others about self
Group meeting Leave Ignore others
Individual assignment Be silent Leave
On a date Stay at periphery Eat and drink
Party at work Be silent Wear distinctive clothes
Party, restaurant/bar Tell jokes Leave
Review with boss Be silent Kiss up
Social engagement boss house Tell jokes Introduce self
Trying to get a date Be silent Stay at periphery
Wedding, fancy restaurant Leave Eat and drink
Working together on urgent project Be silent Stay with comfort other
Working with 1 other Leave Ensure fairness

Note. For the rejection sensitive individual, biases for avoid rejection � 2.1, and biases for avoid interpersonal
conflict � 2.1; g _e (approach) � 0.9; g _e (avoid) � 1.2. For the normal individual, bias for avoid rejection �
baseline, and bias for avoid interpersonal conflict � baseline; g _e (approach) � 0.9; g _e (Avoid) � 1.1.
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patterns of goals and resources. We first identified three pairs of
traits (sociable–shy, confident–anxious, and industrious–lazy) and
manipulated the bias weights for the goals and resources relevant
to a specific trait. Increasing the bias for a goal or resource
increases its baseline activation and makes it more likely to fire.
Changing the baseline activations of the relevant goals and re-
sources had the expected effect on behavior. For example, increas-
ing biases on sociable related goals led to increased levels of
behavior involving people, whereas increasing the biases on shy
related goals led to increased levels of solitary behaviors.

This simulation also showed consistent evidence of person–
situation interactions. For example, although the industrious and
the lazy individual differed considerably in most situations, when
they were at a dance, they both asked someone to dance. Or for the
sociable–shy pairings, the two individuals look quite similar in the
individual assignment work setting, where there is no one else
around, and in social settings with familiar others. However, they
differed considerably in work settings with other people and in
social settings with unfamiliar others. Finally, the confident–
anxious individuals are similar in work settings but differ in social
settings. Thus, this model can capture various aspects of person–
situation interactions.

Simulation 7 provided further evidence that our model can
capture person–situation interactions, in simulating aspects of
Fleeson’s (2001, 2007) work demonstrating that intraindividual
variability in personality states is frequently as great as interindi-
vidual variability in personality traits. We simulated the communal
aspects of extraversion and showed considerable variability both
within and between individuals in their response to a range of
situations.

Finally, Simulation 8 showed that we could simulate a fairly
specific personality trait by manipulating a small set of motives.
We simulated aspects of Downey’s (Downey & Feldman, 1996)
concept of rejection sensitivity by increasing the bias weights on
two motives, avoid social rejection and avoid interpersonal conflict
and showed that this led to a substantial increase in social with-
drawal.

Relations to Other Computational
Models of Personality

Read and Miller (2002) and Read et al. (2006). The current
model differs in important ways from our previous model (Read &
Miller, 2002). The broadest difference is that our original model
was quite abstract, with very abstract representations of personality
and situations, whereas this model focuses on simulating much
more realistic and specific aspects of situations, personality, and
behavior.

A number of changes enabled the creation of much richer and
more realistic simulations. First, the current model includes learn-
ing, enabling us to capture realistic ecological frequencies. But
more important, learning allowed us to examine how initial indi-
vidual differences in sensitivity to reward and punishment (e.g.,
early temperament) could lead to personality differences due to
differential learning. For example, individuals who find certain
situations more punishing should learn to respond more quickly
and strongly with avoidant behaviors.

Second, we introduced more realistic and richer situational
representations. In the current model, each node in the situation

layer corresponds to a different feature, and each situation is
represented by a configuration of situational features. For example,
a party situation could be defined by features for music, alcohol,
other people, a large room, and low lighting. A working with
others situation could be defined by features for a conference
room, fluorescent lights, having work to do, and being with other
people. Thus, there was no longer a one to one situational feature–
goal correspondence, as in the earlier model. A goal’s activation is
the result of input from a configuration of situational features.
Thus, the model should learn to associate configurations of situa-
tional features to different goals.

Third, our potential trait representations are much richer. Al-
though in both models, gains on the two motive layers and inhi-
bition are important in representing broad trait dimensions, in the
current model, patterns of activated goals and resources are a key
part of the definition of specific traits. This allows us to capture
more specific traits than in the previous model.

We also used more concrete behaviors. Behavior nodes corre-
spond to such things as tell jokes, dance, drink alcohol, and work
hard. Previously, the behavior nodes corresponded to highly ab-
stract behaviors, such as helpful or fearful behavior. Also, re-
sources were present previously, but were not used. Here, they are
part of the joint input into the hidden layer that activates behaviors,
and they are part of trait definitions.

A final important difference is in how behaviors are activated. In
the previous version, each behavior received input from a single
corresponding goal. However, in the current model, a behavior is
activated by a configuration of situational features, resources, and
goals, all mediated through two hidden layers. Thus, the triggering
of behavior is the result of a much more complex set of interac-
tions among a number of different components. One reason for this
more complex model is that we were modeling more aspects of
Read and Miller’s (1989; L. C. Miller & Read, 1987) model
of traits, in which they argued that traits consist of configurations
of goals, plans, resources, and beliefs (also see Mischel and Sho-
da’s, 1995, concept of Cognitive Affective Units [CAUs]).

In a recent article (Read et al. 2006), we described how some
aspects of the present theoretical model provided the foundation
for a program (Personality enabled architecture for cognition
[PAC]) to create intelligent agents that display realistic variations
in personality. PAC was explicitly designed as an architecture for
creating intelligent agents and not as a theoretical model of human
personality. In that article, we did not systematically test the
assumptions of our theoretical model but rather focused on
whether it could produce plausible variations in the behavior of
intelligent agents, with a symbolic, cognitive architecture. In con-
trast, in the present article, we systematically evaluate major
assumptions of the theoretical model.

There are other major differences between the current model
and PAC. The current model is implemented in a neural network
architecture that was designed to be neurobiologically plausible
and to capture major aspects of the neurobiology of cognition and
motivation. Moreover, the neural network model has a mechanism
for inhibition that allows for the dynamic adjustment of degree of
inhibition as a function of the level of activation of a layer. In
contrast, PAC only allows for a static, very partial manipulation of
the degree of disinhibition and constraint in terms of a constant
level of inhibition and a fixed number of motives that can be
active.
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Further, the current model has learning, which PAC does not.
Thus, the current model can (a) capture individual differences in
reward and punishment sensitivity in learning to respond to situ-
ations, (b) capture how chronic differences in baseline motive
activations might develop, and (c) model the development of
configural representations, such as the representation of different
kinds of situations. Finally, the network model allows us to exam-
ine the role of constraint satisfaction processing in personality
related processes.

Mischel and Shoda’s CAPS model. Mischel and Shoda
(1995, 2008; Shoda & Mischel, 1998) have presented a constraint
satisfaction model of human personality, based on Mischel’s
(1973) cognitive social learning theory of personality. In their
model, a set of input units, representing situational features, con-
nect to a recurrently connected set of mediating CAUs, which are
then connected to a behavior node. But, there has been no real
attempt to specify the structure of underlying motivational or
neural systems; different personalities are represented by different
randomly connected sets of mediating CAUs. Moreover, they have
not explored whether or how these motivational and cognitive
units might be used to capture the interindividual structure of
human personality as represented in structural models of person-
ality. In contrast, a central goal of the current model is to begin to
specify the intraindividual structure of personality in terms of
structured motivational systems and to demonstrate how the inter-
individual structure of human personality can result from the
interactions among underlying motivational and cognitive struc-
tures and processes. Further, although Mischel and Shoda (1995;
Shoda & Mischel, 1998) acknowledged that work on genetics and
the neurobiological bases of behavior are ultimately important in
understanding the structure and dynamics of personality, Mischel
and Shoda (1995; Shoda & Mischel, 1998) have not explored the
relationship of genetics and the neurobiological bases of behavior
to their model.

Other models of personality dynamics. Cervone (2004) and
Kuhl (2000) recently proposed other accounts of the intrapersonal
structure of personality mechanisms and dynamics. In the knowl-
edge and appraisal personality architecture (KAPPA) model, Cer-
vone (2004, 2005) argued that individual differences and cross-
situational consistency in behavior can be at least partially
understood in terms of idiographic differences in knowledge struc-
tures and people’s appraisals of their situations. Kuhl (2000), in his
personality systems interaction theory, argued that motivated be-
havior and personality differences can be understood in terms of
the flow of energy among four basic, general systems: object
recognition, intuitive behavior control, extension memory/feeling
(parallel, holistic, and fast), and intention memory/thinking (serial,
analytic and slow). Both models focus on the within person or
intraindividual structure of the mechanisms that underlie person-
ality but focus little attention on the interindividual structure of
personality.

Pickering’s computational model of Gray’s reinforcement sen-
sitivity theory. Pickering (2004, 2008) has recently presented a
computational model of the revised reinforcement sensitivity the-
ory (RST; Gray & McNaughton, 2000). In the revised RST, the
BAS remains largely the same, except that it now governs sensi-
tivity to both conditioned and unconditioned cues to reward (ap-
petitive stimuli; which is how it had been typically treated),

whereas previously, it only governed cues to conditioned reward.
However, the conception of the BIS has changed considerably.
Originally, the BIS governed sensitivity to conditioned cues to
punishment. The fight–flight–freeze system (FFFS) now takes that
role, governing sensitivity to all cues to aversive situations (both
conditioned and unconditioned) and the primary emotion associ-
ated with it is fear. Because the new FFFS plays the same func-
tional role as the old BIS, results from questionnaire measures of
the BIS (punishment sensitivity) are still relevant.

In the revised version of RST, the BIS is sensitive to approach–
avoidance conflict between the BAS and the FFFS, and the pri-
mary associated emotion is anxiety. A clear distinction is made
between anxiety and fear, with Gray and McNaughton (2000)
having argued for distinct neurobiological substrates for the two
systems. However, this claim is the subject of active argument.

Although the revised RST changes the roles of the BIS and the
FFFS, the structure of the revised system is quite similar to the old
one. One motivational system still responds to cues of reward
(BAS), and a second responds to aversive cues (FFFS).

The major addition is that the BIS is now an approach–
avoidance goal conflict monitoring system. The BIS receives ex-
citatory relationships from both the BAS and the FFFS and is
highly activated only when there is high goal conflict, represented
by high activation of both the BAS and the FFFS. The BIS has an
inhibitory relation with the BAS and an excitatory relation with the
FFFS. So, high goal conflict leads to strengthening avoidance
motives and weakening approach motives. Further, the BAS and
the FFFS have inhibitory relationships to each other, further help-
ing to increase the difference between approach and avoidance
motives.

Pickering (2004, 2008) presented a computational model of the
new RST. One of his primary questions was the implication of the
RST system structure for the extent to which major dimensions of
personality should be orthogonal or correlated. He proposed that
the relations among the various systems imply that the major
dimensions of personality that correspond to the systems in RST
should be correlated, rather than orthogonal. In a key simulation,
he generated 100 individuals with different combinations of BIS,
BAS, and FFFS sensitivities drawn randomly from independent
normal distributions and then exposed each individual to 200
different situations composed of different strengths of reward and
punishment cues. As predicted, there were strong negative corre-
lations between the BAS activation and the FFFS activation,
consistent with empirical findings of negative relationships be-
tween neuroticism and extraversion, as well as positive correla-
tions between the BIS and the FFFS activations, paralleling em-
pirical findings indicating an overlap between fear and anxiety.
There was also a somewhat unexpected positive correlation be-
tween the BAS activation and the BIS activation, although in
hindsight, this is not surprising because high BIS activation, which
results from approach–avoidance conflict, depends on the joint
activation of the BAS and the FFFS.

Our model is strongly influenced by Gray’s (1987a, 1987b,
1988, 1991) original conception of the BIS and BAS and is also
broadly consistent with the revised RST. However, there are
important differences. First, in the revised RST (Smillie, Pick-
ering, & Jackson, 2006), the approach (BAS) and avoidance
(FFFS) systems have direct inhibitory relationships with each
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other, whereas in our model, the two systems do not. Instead,
there is strong competition among potential behaviors, so that
the motive systems compete indirectly through their attempt to
control behavior. This indirect competition could influence the
activation of the two motive systems, through the feedback
relationships from the behavior layer to the goal layers.

One potential advantage of our approach is that it allows be-
havior to be jointly driven by both approach and avoidance moti-
vations, if a behavior can simultaneously satisfy both types of
motive. For example, an individual’s choice of a behavior in a
social situation, such as telling jokes, might be jointly motivated
by a motive to be with others and a motive to avoid social
rejection. In contrast, in Pickering’s (2004, 2008) model, high
Approach (BAS) and avoidance (FFFS) motives necessarily com-
pete with one another.

Second, the revised RST has a goal conflict monitoring
system, the BIS, which functions to reduce the conflict between
the approach and the avoidance system by inhibiting the BAS
and facilitating the FFFS when it is highly activated. In con-
trast, our model does not have an explicit conflict monitoring
system, although the high degree of inhibition in our behavior
output layer will serve to function, at least partially, as a
conflict resolution system. Inhibition in our behavior layer is set
so that only one behavior will be strongly active. It remains to
be seen whether an explicit conflict monitoring system for
motives is necessary.

Third, although our model and the revised RST are both based
on two broad motivational systems, we are also trying to map out
specific motives that are governed by the two broad systems.
Although RST acknowledges that more specific motives exist,
they are not a focus.

Poznanski and Thagard (2005). Poznanski and Thagard
(2005) have recently presented a neural network model of person-
ality for virtual characters. It is a feed-forward network in which
personality is represented by single nodes corresponding to each
pole of the Big Five factors. Specific personalities are coded by
assigning baseline activations to each node. For example, someone
who is extraverted and disagreeable would have a high activation
on both the Extraverted and Disagreeable nodes. Personality nodes
are treated as input nodes that send activation to behavior nodes.
Behavior nodes also receive inputs from emotion nodes, situation
nodes, mood nodes, and relationship nodes. Thus, activation of a
given behavior is a joint function of these inputs. Further, emotion
nodes receive inputs from situation, relationship, and mood nodes.
Poznanski and Thagard described situational features and behav-
iors fairly abstractly. For example, situations are described as
helpful, stressful, hostile, and so on. Behaviors are described as
help, avoid, explore, persist, and so on.

This is a useful way to program virtual characters to display
personality. Consistent with much current theory, it is argued that
personality related behavior is based on differences in levels of the
Big Five factors, represented by corresponding nodes. However,
this does not provide additional insight into the structure or dy-
namics of human personality.

Quek and Moskowitz (2007). Quek and Moskowitz (2007)
used a three-layer feed-forward neural network to simulate data
that had been collected with an event-contingent recording meth-
odology. In one simulation, they had three input nodes correspond-
ing to possible workplace roles (boss, coworker, or supervisee), a

hidden layer, and two output nodes for dominant and submissive
behavior. The network was trained on a subset of the data and
tested on a separate subset. It learned the relationship between
work role and dominant versus submissive behavior. In a second
simulation, a network learned the relationship between gender and
communal behavior in different kinds of relationships, with a
different data set. Quek and Moskowitz found that the network
identified relationships that had been found in the literature. Thus,
they demonstrated that their neural network could learn the em-
pirical relationships between gender- and role-related characteris-
tics of individuals and their behavior in different settings.

Implications

Bridging the gap between personality dynamics and dispo-
sitional approaches to personality. A major divide in the field
of personality is between those who focus on models of personality
dynamics and those who take a dispositional or trait based ap-
proach to personality (see Mischel and Shoda, 1998, and Funder,
2001, for a discussion). Dynamic, process oriented models tend to
be based on constructs such as goals and motives, beliefs, and
delay of gratification or self-control (e.g., Cervone, 2004; Kuhl,
2000; Little, Salmela-Aro, & Phillips, 2006; Mischel & Shoda,
1995) and have focused on how behavior changes over time and
situation as a result of personality dynamics. Such approaches tend
to be idiographic, focusing on understanding the personality sys-
tem and personality dynamics of individuals. In contrast, disposi-
tional or trait based approaches have tended to focus on individual
differences captured by various trait constructs, such as the Big
Five. Here, the focus tends to be on personality constructs that are
stable across time and situations. Moreover, this approach is no-
methetic and considers trait constructs and trait structure that are
revealed by looking across individuals.

This distinction between dispositional and dynamic approaches
is almost identical to Cervone’s (2005) distinction between inter-
individual and intraindividual accounts of structure in personality.
One conception is the interindividual, psychometric structure of
something like the Big Five, the statistical structure of personality
revealed when looking across people. Another sense of personality
structure is the intraindividual or within person structure of the
processing systems that are responsible for the behavior of an
individual.

As Cervone (2005) argued, interindividual structure, such as the
Big Five, does not have to be explicitly replicated at the intrain-
dividual level. For example, just because interindividual person-
ality structure can be described by something like five broad,
largely orthogonal factors, this does not mean that the same struc-
ture will also be found in the organization of personality within the
individual. Nevertheless, there must be some way in which
the intraindividual structure of personality mechanisms results in
the interindividual structure of personality.

Unifying these different approaches is essential for an integrated
field of personality, but currently, little work has been done to
attempt such unification. Mischel and Shoda (1998) argued that
dynamic processing approaches, such as their CAPS model, can be
integrated with dispositional approaches, and they have taken
some initial steps in this direction.

Our neural network model furthers the attempt to bridge the gap
between personality dynamics and a dispositional approach to
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personality. It is a dynamic processing model, based upon the
behavior of structured motivational and processing systems. It
captures aspects of personality dynamics, so that as the situation
and the internal state of the “individual” changes, it produces
behavior that varies across time and situations. At the same time,
the structure of the motivational and processing systems, modeled
with individual differences in parameters, can capture stable indi-
vidual differences in behavioral tendencies—that is, dispositions.
Individual differences in the baseline parameters of this system can
be conceptualized as due both to initial genetic and other biolog-
ical differences, as well as to experiential differences that can
“tune” the parameters of the systems. As we argue below when we
discuss person–situation interactions and personality dynamics,
this model provides both an account of personality dynamics
across time and situations and an account of broad, stable dispo-
sitions.

Relation of the current model to the structure of individual
personality and the Big Five. This model is intended as a
potential model of the structure of human personality. But by that
we do not mean that any specific instantiation of the model will
provide a replication of personality structure, such as the Big Five.
Instead, we view any specific set of parameters and learning
experiences as representing a particular individual or type of
individual.

The Big Five is a representation of the structure of human person-
ality across a group of people. This structure is not seen for a single
person but is rather the result of the covariation among characteristics
within a large sample of people. Therefore, if we created a large
number of virtual individuals, each with a different random set of
parameters, we would expect the resulting patterns of behavior across
individuals to give us something like the Big Five.

Person–situation interactions. The current model has several
important implications for thinking about person–situation inter-
actions. These are clearer if we first review how person and
situation are represented. The personality of an actor is primarily
represented in terms of aspects of the motive systems, such as the
conductances for the different motive systems, their thresholds, the
baseline activation of individual goals, and learned weights be-
tween situational features and goals and between goals and behav-
ior (personal resources also play a role). These representations are
consistent with our argument that personality traits are goal-based
structures.

Situations are represented in terms of their relevance to the
actor’s goals and motives: Configurations of features are linked
both to the actor’s goals and to the actor’s behaviors. That is, a
central aspect of how situations are represented is in terms of how
their features influence the activation of goals. Another way to
frame this is that situations are represented in terms of affordances
for goal pursuit. In a recent article, Yang, Read, and Miller (in
press) have argued extensively that situations can be conceptual-
ized in terms of the goals whose satisfaction they afford (goal
contents) and what happens to those goals (goal processes).

Thus, the person is represented in terms of motivational system
and situations that are represented in terms of their affordances for
the person’s motives. Thus, we can conceptualize person–situation
interactions in terms of the interaction between the motive systems
(person) and the influence of situational features (situation) on the
motive systems. The activation of motives is a function of stable
characteristics, such as the sensitivity of the relevant motivational

system and the baseline activations of individual motives, as well
as the activation that motives receive from situational features.
Thus, state motive activation is a joint function of stable individual
differences in the motive systems and the impact of present situ-
ational features.

In this way, our work provides a specific model of precisely how
person and situation might interact and result in patterns of behav-
ior. Rather than providing only a verbal or statistical account of
person–situation interactions, it provides a mechanistic, computa-
tional model for thinking about how person characteristics interact
with features of the situation.

For example, one could keep a particular personality constant
and examine how it responded differently to different situations.
One could keep a particular situation constant and see how differ-
ent personalities responded differently to the same situation. Or,
one could examine what happens when both personality and situ-
ation vary. Simulations 6, 7, and 8, in which we represented
individual traits by chronic baseline activations of relevant motives
and resources, directly address these kinds of questions. For each
of the traits, we found evidence for interactions between the
characteristics of the “individual” and the features of the situations.

Personality dynamics. This model also provides a concrete
way to think about the dynamics of personality over time and
across situations, in terms of the interactions of situational features
and the individual’s underlying motivational system. Several re-
searchers (e.g., Fleeson, 2001, 2007; D. Heller, Komar, & Lee,
2007) have recently shown that within-individual variability in
personality states across time is at least as high as between-person
variability in personality traits. For example, for any individual
there is at least as much variability in extraversion-related behavior
across the day as there is variability between individuals in extra-
version. This should probably not be surprising, as the extent of
extraversion-related behavior over the course of a day depends on
such things as the presence or absence of other people, which vary
considerably across the day.

Such variability in personality related behavior is consistent
with the current model. In our model, the activation of motives and
the choice of behaviors is highly dependent on inputs from the
situation. As different situations are encountered, different motives
will be more or less highly activated, and the activated motives
will “compete” for the control of behavior. One factor influencing
whether a particular motive is highly activated and drives person-
ality is whether other motives that compete with the target motive
are simultaneously active. The activation of a motive is driven not
only by related situations but also by the activation of other
motives. This process of person–situation interaction and concur-
rent motive competition will result in varying personality related
behavior across time and situations, as the activation of motives
changes.

As we showed in Simulation 6, the model can be set up so that
the current state of the network is partially a function of its
preceding state. Depending on what other situations have been
previously encountered and how they activated the motives, the
activation of the motive systems at the current time will differ.
This suggests another way in which situational variability—
specifically, recently encountered events—contributes to within
person variability.

Role of interacting systems and relations to traits. Smillie,
Pickering, and Jackson (2006; Corr, 2002, 2004) note that one
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implication of their interacting systems account of RST is that
there is not a direct correspondence between the activation of
motivational systems and trait related behavior. For example, since
the BAS and the FFFS have an inhibitory relationship, there is not
necessarily a direct relationship between the sensitivity of the BAS
and the extent of extraverted behavior. Whether a sensitive BAS
will lead to extraverted behavior will depend on the strength of
both reward and punishment cues.

Although the interaction of motivational systems in our model is
somewhat different than in RST, our model also implies that
personality will be the result of interactions among systems. There
will not necessarily be a direct relationship between the charac-
teristics of a single motivational system and the hypothesized
corresponding trait. For example, in our model, the approach and
avoidance systems compete for the control of behavior.

Smillie, Pickering, and Jackson (2006; Corr, 2002) suggested
that there will be direct relationships between the motivational
systems and trait related behavior only in some situations. For
example, in a situation in which there are only reward cues,
behavior should be a direct result of the sensitivity of the BAS. If
individuals are quite extreme on the relevant systems (e.g., very
high BAS sensitivity, very low FFFS sensitivity) then the BAS
should directly drive behavior. However, most situations have both
reward and punishment cues, and most individuals are in the
normal range on BAS and FFFS; here motivational systems inter-
act.

The idea that most people have only moderately strong motiva-
tional systems also implies that their behavior will be highly
sensitive to shifts in the distribution of cues to both reward and
punishment. Thus, small shifts in the relative distribution of situ-
ational cues to reward and punishment could potentially lead to
large shifts in behavior. This has strong implications for thinking
about person–situation interactions; there will clearly be nonlinear
relationships between personality and situations in the current
model (as in Pickering’s [2008] computational model of the RST).

Conclusion

This model addresses a number of issues in personality and
integrates a number of aspects of personality psychology: the
lexical approach to personality and the Big Five; goal-based,
dynamic approaches to personality; work on the neurobiology of
personality and temperament; and work on the evolutionary tasks
that people address in everyday life.

A major goal with the current model is to understand human
personality in terms of structured motivational systems. As part of
this account, it integrates several different approaches to under-
standing human personality in terms of motivational systems.
Specifically, it brings together work on goal-based models of
personality, such as Mischel and Shoda (1995) and L. C. Miller
and Read (1987, 1991; Read & Miller, 1989).

The current model also shows how stable traits or dispositions
can arise from a dynamic model of personality. In doing so, it
points the way toward a possible integration of the dynamic and
dispositional approaches to personality. It provides an explicit
account of how an individual could display broad, stable, dispo-
sitional characteristics, while showing considerable intraindividual
variability in behavior across time and situations. These same

mechanisms also provide the basis for more fully understanding
person–situation interaction.

We believe that explicit modeling of the psychological and
neurobiological mechanisms underlying personality dynamics and
personality structure has the promise to provide a coherent account
of a wide range of phenomena in personality. Such virtual person-
alities provide a powerful set of tools for hypothesis generation
and testing and for theory building and data integration, thereby
iteratively advancing the science of human behavior.
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